ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum corrections to the conductivity and Hall coefficient of a 2D electron gas in a dirty AlGaAs/GaAs/AlGaAs quantum well: transition from diffusive to ballistic regime

76   0   0.0 ( 0 )
 نشر من قبل Vincent Thomas Francois Renard
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report an experimental study of the quantum corrections to the longitudinal conductivity and the Hall coefficient of a low mobility, high density two-dimensional two-dimensional electron gas in a AlGaAs/GaAs/AlGaAs quantum well in a wide temperature range (1.5 K - 110 K). This temperature range covers both the diffusive and the ballistic interaction regimes for our samples. It was therefore possible to study the crossover region for the longitudinal conductivity and the Hall effect.

قيم البحث

اقرأ أيضاً

We report an experimental study of quantum conductivity corrections in a low mobility, high density two-dimensional electron gas in a AlGaAs/GaAs/AlGaAs quantum well in a wide temperature range (1.5K - 110K). This temperature range covers both the di ffusive and the ballistic interaction regimes for our samples. It has been therefore possible to study the crossover between these regimes for both the longitudinal conductivity and the Hall effect. We perform a parameter free comparison of our experimental data for the longitudinal conductivity at zero magnetic field, the Hall coefficient, and the magnetoresistivity to the recent theories of interaction-induced corrections to the transport coefficients. A quantitative agreement between these theories and our experimental results has been found.
We report quantum dots fabricated on very shallow 2-dimensional electron gases, only 30 nm below the surface, in undoped GaAs/AlGaAs heterostructures grown by molecular beam epitaxy. Due to the absence of dopants, an improvement of more than one orde r of magnitude in mobility (at 2E11 /cm^2) with respect to doped heterostructures with similar depths is observed. These undoped wafers can easily be gated with surface metallic gates patterned by e-beam lithography, as demonstrated here from single-level transport through a quantum dot showing large charging energies (up to 1.75 meV) and excited state energies (up to 0.5 meV).
On a high-mobility 2D electron gas we have observed, in strong magnetic fields (omega_{c} tau > 1), a parabolic negative magnetoresistance caused by electron-electron interactions in the regime of k_{B} T tau / hbar ~ 1, which is the transition from the diffusive to the ballistic regime. From the temperature dependence of this magnetoresistance the interaction correction to the conductivity delta sigma_{xx}^{ee}(T) is obtained in the situation of a long-range fluctuation potential and strong magnetic field. The results are compared with predictions of the new theory of interaction-induced magnetoresistance.
We study the spin dynamics in a high-mobility two-dimensional electron gas confined in a GaAs/AlGaAs quantum well. An unusual magnetic field dependence of the spin relaxation is found: as the magnetic field becomes stronger, the spin relaxation time first increases quadratically but then changes to a linear dependence, before it eventually becomes oscillatory, whereby the longitudinal and transverse times reach maximal values at even and odd filling Landau level factors, respectively. We show that the suppression of spin relaxation is due to the effect of electron gyration on the spin-orbit field, while the oscillations correspond to oscillations of the density of states appearing at low temperatures and high magnetic fields. The transition from quadratic to linear dependence can be related to a transition from classical to Bohm diffusion and reflects an anomalous behavior of the two-dimensional electron gas analogous to that observed in magnetized plasmas.
131 - X. Fu , Q. Shi , M. A. Zudov 2019
We report on quantum Hall stripes (QHSs) formed in higher Landau levels of GaAs/AlGaAs quantum wells with high carrier density ($n_e > 4 times 10^{11}$ cm$^{-2}$) which is expected to favor QHS orientation along unconventional $left < 1bar{1}0 right >$ crystal axis and along the in-plane magnetic field $B_{||}$. Surprisingly, we find that at $B_{||} = 0$ QHSs in our samples are aligned along $left < 110 right >$ direction and can be reoriented only perpendicular to $B_{||}$. These findings suggest that high density alone is not a decisive factor for either abnormal native QHS orientation or alignment with respect to $B_{||}$, while quantum confinement of the 2DEG likely plays an important role.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا