ﻻ يوجد ملخص باللغة العربية
We derive the multiparticle-correlation expansion of the excess entropy of classical particles in the canonical ensemble using a new approach that elucidates the rationale behind each term in the expansion. This formula provides the theoretical framework for an entropy-based ordering criterion that has been already tested for a variety of model fluids and thermodynamic phenomena. In view of future investigations of the phase diagram of colloidal mixtures, we detail in this paper the case of a two-component system of spherical and rod-like particles and discuss the symmetries underlying both the self and distinct pair-distribution functions under various geometrical constraints.
As first shown by H. S. Green in 1952, the entropy of a classical fluid of identical particles can be written as a sum of many-particle contributions, each of them being a distinctive functional of all spatial distribution functions up to a given ord
Recently, an Enskog-type kinetic theory for Vicsek-type models for self-propelled particles has been proposed [T. Ihle, Phys. Rev. E 83, 030901 (2011)]. This theory is based on an exact equation for a Markov chain in phase space and is not limited to
We simulate the motion of spherical particles in a phase-separating binary mixture. By combining cell dynamical equations with Langevin dynamics for particles, we show that the addition of hard particles significantly changes both the speed and the m
We investigate the structure of a dilute mixture of amphiphilic dimers and spherical particles, a model relevant to the problem of encapsulating globular guest molecules in a dispersion. Dimers and spheres are taken to be hard particles, with an addi
For the spherical model with nearest-neighbour interactions, the microcanonical entropy s(e,m) is computed analytically in the thermodynamic limit for all accessible values of the energy e and the magnetization m per spin. The entropy function is fou