ﻻ يوجد ملخص باللغة العربية
We demonstrate the use of a piezoelectric actuator to apply, at low temperatures, uniaxial stress in the plane of a two-dimensional electron system confined to a modulation-doped AlAs quantum well. Via the application of stress, which can be tuned in situ and continuously, we control the energies and occupations of the conduction-band minima and the electronic properties of the electron system. We also report measurements of the longitudinal and transverse strain versus bias for the actuator at 300, 77, and 4.2 K. A pronounced hysteresis is observed at 300 and 77 K, while at 4.2 K, strain is nearly linear and shows very little hysteresis with the applied bias.
We report the design and characterization of an optical shutter based on a piezoelectric cantilever. Compared to conventional electro-magnetic shutters, the device is intrinsically low power and acoustically quiet. The cantilever position is controll
We report direct experimental evidence that the insulating phase of a disordered, yet strongly interacting two-dimensional electron system (2DES) becomes unstable at low temperatures. As the temperature decreases, a transition from insulating to meta
We have performed electrical resistivity measurements on single crystal BaFe2As2 under high pressure P up to 16 GPa with a cubic anvil apparatus, and up to 3 GPa with a modified Bridgman anvil cell. The samples were obtained from the same batch, whic
We present piezoresistance measurements in modulation doped AlAs quantum wells where the two-dimensional electron system occupies two conduction band valleys with elliptical Fermi contours. Our data demonstrate that, at low temperatures, the strain g
The state of a sample during crystal growth from high temperature solutions is not accessible in conventional furnace systems. An optimization of the growth parameters often requires arduous trial and error procedures in particular in case of novel m