ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin Glass and ferromagnetism in disordered Kondo lattice

155   0   0.0 ( 0 )
 نشر من قبل F\\'abio Zimmer
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The competition among spin glass (SG), ferromagnetism and Kondo effect has been analysed in a Kondo lattice model where the inter-site coupling $J_{ij}$ between the localized magnetic moments is given by a generalized Mattis model cite{Mattis} which represents an interpolation between ferromagnetism and a highly disordered spin glass. Functional integral techniques with of Grassmann fields has been used to obtain the partition function. The static approximation and the replica symmetric ansatz has also been used. The solution of the problem is presented as a phase diagram temperature $T$ {it versus} $J_K$ (the strength of the intra-site interaction). If $J_K$ is small, for decreasing temperature there is a second order transition from a paramagnetic to a spin glass phase For lower temperatures, a first order transition appears where solutions for the spin glass order parameter and the local magnetizations are simultaneously non zero. For very low temperatures, the local magnetizations becomes thermodinamically stables. For high $J_K$, the Kondo state is dominating. These results could be helpful to clarify the experimental situation of $CeNi_{1-x}Cu_{x}$.



قيم البحث

اقرأ أيضاً

The competition between spin glass, ferromagnetism and Kondo effect is analysed here in a Kondo lattice model with an inter-site random coupling $J_{ij}$ between the localized magnetic moments given by a generalization of the Mattis model which repre sents an interpolation between ferromagnetism and a highly disordered spin glass. Functional integral techniques with Grassmann fields have been used to obtain the partition function. The static approximation and the replica symmetric ansatz have also been used. The solution of the problem is presented as a phase diagram giving $T/{J}$ {it versus} $J_K/J$ where $T$ is the temperature, $J_{K}$ and ${J}$ are the strengths of the intrasite Kondo and the intersite random couplings, respectively. If $J_K/{J}$ is small, when temperature is decreased, there is a second order transition from a paramagnetic to a spin glass phase. For lower $T/{J}$, a first order transition appears between the spin glass phase and a region where there are Mattis states which are thermodynamically equivalent to the ferromagnetism. For very low ${T/{J}}$, the Mattis states become stable. On the other hand, it is found as solution a Kondo state for large $J_{K}/{J}$ values. These results can improve the theoretical description of the well known experimental phase diagram of $CeNi_{1-x}Cu_{x}$.
We propose a method to study the magnetic properties of a disordered Ising kagome lattice. The model considers small spin clusters with infinite-range disordered couplings and short-range ferromagnetic (FE) or antiferromagnetic interactions. The corr elated cluster mean-field theory is used to obtain an effective single-cluster problem. A finite disorder intensity in FE kagome lattice introduces a cluster spin-glass (CSG) phase. Nevertheless, an infinitesimal disorder stabilizes the CSG behavior in the geometrically frustrated kagome system. Entropy, magnetic susceptibility and spin-spin correlation are used to describe the interplay between disorder and geometric frustration (GF). We find that GF plays an important role in the low-disorder CSG phase. However, the increase of disorder can rule out the effect of GF.
Glass states of superfluid A-like phase of 3He in aerogel induced by random orientations of aerogel strands are investigated theoretically and experimentally. In anisotropic aerogel with stretching deformation two glass phases are observed. Both phas es represent the anisotropic glass of the orbital ferromagnetic vector l -- the orbital glass (OG). The phases differ by the spin structure: the spin nematic vector d can be either in the ordered spin nematic (SN) state or in the disordered spin-glass (SG) state. The first phase (OG-SN) is formed under conventional cooling from normal 3He. The second phase (OG-SG) is metastable, being obtained by cooling through the superfluid transition temperature, when large enough resonant continuous radio-frequency excitation are applied. NMR signature of different phases allows us to measure the parameter of the global anisotropy of the orbital glass induced by deformation.
Spin glasses are a longstanding model for the sluggish dynamics that appears at the glass transition. However, spin glasses differ from structural glasses for a crucial feature: they enjoy a time reversal symmetry. This symmetry can be broken by appl ying an external magnetic field, but embarrassingly little is known about the critical behaviour of a spin glass in a field. In this context, the space dimension is crucial. Simulations are easier to interpret in a large number of dimensions, but one must work below the upper critical dimension (i.e., in d<6) in order for results to have relevance for experiments. Here we show conclusive evidence for the presence of a phase transition in a four-dimensional spin glass in a field. Two ingredients were crucial for this achievement: massive numerical simulations were carried out on the Janus special-purpose computer, and a new and powerful finite-size scaling method.
98 - V. Bryksa , W. Nolting 2007
We propose a self-consistent approximate solution of the disordered Kondo-lattice model (KLM) to get the interconnected electronic and magnetic properties of local-moment systems like diluted ferromagnetic semiconductors. Aiming at $(A_{1-x}M_x)$ com pounds, where magnetic (M) and non-magnetic (A) atoms distributed randomly over a crystal lattice, we present a theory which treats the subsystems of itinerant charge carriers and localized magnetic moments in a homologous manner. The coupling between the localized moments due to the itinerant electrons (holes) is treated by a modified RKKY-theory which maps the KLM onto an effective Heisenberg model. The exchange integrals turn out to be functionals of the electronic selfenergy guaranteeing selfconsistency of our theory. The disordered electronic and magnetic moment systems are both treated by CPA-type methods. We discuss in detail the dependencies of the key-terms such as the long range and oscillating effectice exchange integrals, the local-moment magnetization, the electron spin polarization, the Curie temperature as well as the electronic and magnonic quasiparticle densities of states on the concentration $x$ of magnetic ions, the carrier concentration $n$, the exchange coupling $J$, and the temperature. The shape and the effective range of the exchange integrals turn out to be strongly $x$-dependent. The disorder causes anomalies in the spin spectrum especially in the low-dilution regime, which are not observed in the mean field approximation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا