ﻻ يوجد ملخص باللغة العربية
An explicit expression for the quadratic density-response function of a many-electron system is obtained in the framework of the time-dependent density-functional theory, in terms of the linear and quadratic density-response functions of noninteracting Kohn-Sham electrons and functional derivatives of the time-dependent exchange-correlation potential. This is used to evaluate the quadratic stopping power of a homogeneous electron gas for slow ions, which is demonstrated to be equivalent to that obtained up to second order in the ion charge in the framework of a fully nonlinear scattering approach. Numerical calculations are reported, thereby exploring the range of validity of quadratic-response theory.
Linear-response time-dependent density-functional theory (TDDFT) can describe excitonic features in the optical spectra of insulators and semiconductors, using exchange-correlation (xc) kernels behaving as $-1/k^{2}$ to leading order. We show how exc
We introduce a new implementation of time-dependent density-functional theory which allows the emph{entire} spectrum of a molecule or extended system to be computed with a numerical effort comparable to that of a emph{single} standard ground-state ca
We analyze possible nonlinear exciton-exciton correlation effects in the optical response of semiconductors by using a time-dependent density-functional theory (TDDFT) approach. For this purpose, we derive the nonlinear (third-order) TDDFT equation f
Using a super-operator formulation of linearized time-dependent density-functional theory, the dynamical polarizability of a system of interacting electrons is given a matrix continued-fraction representation whose coefficients can be obtained from t
Time-dependent density-functional theory (TDDFT) is a computationally efficient first-principles approach for calculating optical spectra in insulators and semiconductors, including excitonic effects. We show how exciton wave functions can be obtaine