ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of Jonscher Law in AC Hopping Conduction of Electron-Doped Nanoporous Crystal 12CaO7Al2O3 in THz Frequency Range

99   0   0.0 ( 0 )
 نشر من قبل Jiro Kitagawa
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have performed terahertz time-domain spectroscopy of carrier-doped nanoporous crystal 12CaO7Al2O3 showing the Mott variable range hopping at room temperature. The real part of the dielectric constant clearly demonstrates the nature of localized carriers. The frequency dependence of both the real and imaginary parts of the dielectric constant can be simply explained by assuming two contributions: a dielectric response by the parent compound with no carriers and an AC hopping conduction with the Jonscher law generally reported up to GHz range. The possible obedience to the Jonscher law in the THz range suggests a relaxation time of the hopping carriers much faster than 1ps in the carrier-doped 12CaO7Al2O3.

قيم البحث

اقرأ أيضاً

We have observed shot noise in the hopping conduction of two dimensional carriers confined in a p-type SiGe quantum well at a temperature of 4K. Moreover, shot noise is suppressed relative to its ``classical value 2eI by an amount that depends on the length of the sample and carrier density, which was controlled by a gate voltage. We have found a suppression factor to the classical value of about one half for a 2 $mu$m long sample, and of one fifth for a 5 $mu$m sample. In each case, the factor decreased slightly as the density increased toward the insulator-metal transition. We explain these results in terms of the characteristic length ($simeq 1mu$m in our case) of the inherent inhomogeneity of hopping transport.
We have studied the AC response of a hopping model in the variable range hopping regime by dynamical Monte Carlo simulations. We find that the conductivity as function of frequency follows a universal scaling law. We also compare the numerical result s to various theoretical predictions. Finally, we study the form of the conducting network as function of frequency.
We show that resonant electron transport in semiconductor superlattices with an applied electric and tilted magnetic field can, surprisingly, become more pronounced as the lattice and conduction electron temperature increases from 4.2 K to room tempe rature and beyond. It has previously been demonstrated that at certain critical field parameters, the semiclassical trajectories of electrons in the lowest miniband of the superlattice change abruptly from fully localised to completely unbounded. The unbounded electron orbits propagate through intricate web patterns, known as stochastic webs, in phase space, which act as conduction channels for the electrons and produce a series of resonant peaks in the electron drift velocity versus electric field curves. Here, we show that increasing the lattice temperature strengthens these resonant peaks due to a subtle interplay between thermal population of the conduction channels and transport along them. This enhances both the electron drift velocity and the influence of the stochastic webs on the current-voltage characteristics, which we calculate by making self-consistent solutions of the coupled electron transport and Poisson equations throughout the superlattice. These solutions reveal that increasing the temperature also transforms the collective electron dynamics by changing both the threshold voltage required for the onset of self-sustained current oscillations, produced by propagating charge domains, and the oscillation frequency.
Long needle-shaped single crystals of Zn1-xCoxO were grown at low temperatures using a molten salt solvent technique, up to x=0.10. The conduction process at low temperatures is determined to be by Mott variable range hopping. Both pristine and cobal t doped crystals clearly exhibit a crossover from negative to positive magnetoresistance as the temperature is decreased. The positive magnetoresistance of the Zn1-xCoxO single crystals increases with increased Co concentration and reaches up to 20% at low temperatures (2.5 K) and high fields (>1 T). SQUID magnetometry confirms that the Zn1-xCoxO crystals are predominantly paramagnetic in nature and the magnetic response is independent of Co concentration. The results indicate that cobalt doping of single crystalline ZnO introduces localized electronic states and isolated Co2+ ions into the host matrix, but that the magnetotransport and magnetic properties are decoupled.
The temperature dependence of the electrical transport of a individual tin oxide nanobelt was measured, in darkness, from 400 to 5K. We found four intrinsic electrical transport mechanisms through the nanobelt. It starts with Thermal-Activation Condu ction between 400 and 314K, Nearest-Neighbor Hopping conduction between 268 and 115K, and Variable Range Hopping conduction below 58K, with a crossover from the 3D-Mott to the 3D-Efros-Shklovskii regime at 16K. We claim that this sequence reveal the three-dimensional nature of the electrical transport in the SnO2 nanobelts, even they are expected to behave as one-dimensional systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا