ﻻ يوجد ملخص باللغة العربية
Measurements of specific heat and electrical resistivity in magnetic fields up to 9 T along [001] and temperatures down to 50 mK of Sn-substituted CeCoIn5 are reported. The maximal -ln(T) divergence of the specific heat at the upper critical field H_{c2} down to the lowest temperature characteristic of non-Fermi liquid systems at the quantum critical point (QCP), the universal scaling of the Sommerfeld coefficient, and agreement of the data with spin-fluctuation theory, provide strong evidence for quantum criticality at H_{c2} for all x < 0.12 in CeCoIn5-xSnx. These results indicate the accidental coincidence of the QCP located near H_{c2} in pure CeCoIn5, in actuality, constitute a novel quantum critical point associated with unconventional superconductivity.
The thermal conductivity kappa of the heavy-fermion metal CeCoIn5 was measured in the normal and superconducting states as a function of temperature T and magnetic field H, for a current and field parallel to the [100] direction. Inside the supercond
We present a study of thermoelectric coefficients in CeCoIn_5 down to 0.1 K and up to 16 T in order to probe the thermoelectric signatures of quantum criticality. In the vicinity of the field-induced quantum critical point, the Nernst coefficient nu
We investigate properties below T_c of odd-frequency pairing which is realized by antiferromagnetic critical spin fluctuations or spin wave modes. It is shown that Delta(epsilon_n) becomes maximum at finite epsilon_n, and Delta(pi T) becomes maximum
We present a detailed analysis of the upper critical field for CeCoIn5 under high pressure. We show that, consistently with other measurements, this system shows a decoupling between maximum of the superconducting transition temperature Tc and maximu
We report the observation of heavy-fermion superconducitivity in CeCoIn5 at Tc =2.3 K. When compared to the pressure-induced Tc of its cubic relative CeIn3 (Tc ~200 mK), the Tc of CeCoIn5 is remarkably high. We suggest that this difference may arise