ترغب بنشر مسار تعليمي؟ اضغط هنا

Sub-Wavelength Multi-Channel Imaging Using a Solid Immersion Lens: Spectroscopy of Excitons in Single Quantum Dots

65   0   0.0 ( 0 )
 نشر من قبل Sebastian Mackowski
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate sub-wavelength imaging of excitons confined to single CdTe quantum dots. By combining slit-confocal microscopy with a hemispherical solid immersion lens we simultaneously map the emission of thousands of single quantum dots with a spatial resolution of 400 nm. By analyzing the linear polarization of the quantum dot emissions at B=0T, we find that the distribution of the exchange splitting is centered at zero with a standard deviation of 0.34 meV. Similar experiments performed at B=3T give an average value of the exciton effective g factor of 3.1. This experimental approach provides an effective means to gain statistical information about the quantum dot exciton fine structure in the ensemble.



قيم البحث

اقرأ أيضاً

48 - M. Varela 2004
The ability to localize, identify and measure the electronic environment of individual atoms will provide fundamental insights into many issues in materials science, physics and nanotechnology. We demonstrate, using an aberration-corrected scanning t ransmission microscope, the spectroscopic imaging of single La atoms inside CaTiO3. Dynamical simulations confirm that the spectroscopic information is spatially confined around the scattering atom. Furthermore we show how the depth of the atom within the crystal may be estimated.
We report on pulsed-laser induced generation of nitrogen-vacancy (NV) centers in diamond facilitated by a solid-immersion lens (SIL). The SIL enables laser writing at energies as low as 5.8 nJ per pulse and allows vacancies to be formed close to a di amond surface without inducing surface graphitization. We operate in the previously unexplored regime where lattice vacancies are created following tunneling breakdown rather than multiphoton ionization. We present three samples in which NV-center arrays were laser-written at distances between ~1 $mu$m and 40 $mu$m from a diamond surface, all presenting narrow distributions of optical linewidths with means between 62.1 MHz and 74.5 MHz. The linewidths include the effect of long-term spectral diffusion induced by a 532 nm repump laser for charge-state stabilization, thereby emphasizing the particularly low charge-noise environment of the created color centers. Such high-quality NV centers are excellent candidates for practical applications employing two-photon quantum interference with separate NV centers. Finally, we propose a model for disentangling power broadening from inhomogeneous broadening in the NV center optical linewidth.
77 - M. Schwab , H. Kurtze , T. Auer 2006
The light emission of self-assembled (In,Ga)As/GaAs quantum dots embedded in single GaAs-based micropillars has been studied by time-resolved photoluminescence spectroscopy. The altered spontaneous emission is found to be accompanied by a non-exponen tial decay of the photoluminescence where the decay rate strongly depends on the excitation intensity. A microscopic theory of the quantum dot photon emission is used to explain both, the non-exponential decay and its intensity dependence. Also the transition from spontaneous to stimulated emission is studied.
69 - F. Rol , S. Founta , H. Mariette 2006
We present an optical spectroscopy study of non-polar GaN/AlN quantum dots by time-resolved photoluminescence and by microphotoluminescence. Isolated quantum dots exhibit sharp emission lines, with linewidths in the 0.5-2 meV range due to spectral di ffusion. Such linewidths are narrow enough to probe the inelastic coupling of acoustic phonons to confined carriers as a function of temperature. This study indicates that the carriers are laterally localized on a scale that is much smaller than the quantum dot size. This conclusion is further confirmed by the analysis of the decay time of the luminescence.
We propose a technique capable of imaging a distinct physical object with sub-Rayleigh resolution in an ordinary far-field imaging setup using single-photon sources and linear optical tools only. We exemplify our method for the case of a rectangular aperture and two or four single-photon emitters obtaining a resolution enhanced by a factor of two or four, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا