ﻻ يوجد ملخص باللغة العربية
We report the reflectivity and the resistivity measurement of Ca_{2-x}Na_{x}CuO_{2}Cl_{2} (CNCOC), which has a single-CuO2-plane lattice with no orthorhombic distortion. The doping dependence of the in-plane optical conductivity spectra for CNCOC is qualitatively the same to those of other cuprates, but a slight difference between CNCOC and LSCO, i.e., the absence of the 1.5 eV peak in CNCOC, can be attributed to the smaller charge-stripe instability in CNCOC. The temperature dependence of the optical onductivity spectra of CNCOC has been analyzed both by the two-component model (Drude+Lorentzian) and by the one-component model (extended-Drude analysis). The latter analysis gives a universal trend of the scattering rate Gamma(omega) with doping. It was also found that Gamma(omega) shows a saturation behavior at high frequencies, whose origin is the same as that of resistivity saturation at high temperatures.
The pairing state symmetry of the electron-doped cuprate superconductors is thought to be s-wave in nature, in contrast with their hole-doped counterparts which exhibit a d-wave symmetry. We re-examine this issue based on recent improvements in our e
Application of pressures or electron-doping through Co substitution into Fe sites transforms the itinerant antiferromagnet BaFe(2)As(2) into a superconductor with the Tc exceeding 20K. We carried out systematic transport measurements of BaFe(2-x)Co(x
BaNi$_{2}$As$_{2}$ is a non-magnetic analogue of BaFe$_{2}$As$_{2}$, the parent compound of a prototype ferro-pnictide high-temperature superconductor. Recent diffraction studies on BaNi$_{2}$As$_{2}$ demonstrate the existence of two types of periodi
Superconductivity and ferromagnetism are two antagonistic cooperative phenomena, which makes it difficult for them to coexist. Here we demonstrate experimentally that they do coexist in EuFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$ with $0.2leq xleq0.4$, in wh
We use a mapping of the multiband Hubbard model for $CuO_{3}$ chains in $RBa_{2}Cu_{3}0_{6+x}$ (R=Y or a rare earth) onto a $t-J$ model and the description of the charge dynamics of the latter in terms pf s spinless model, to study the electronic str