ﻻ يوجد ملخص باللغة العربية
Hamiltonians for general multi-state spin-glass systems with Ising symmetry are derived for both sequential and synchronous updating of the spins. The possibly different behaviour caused by the way of updating is studied in detail for the (anti)-ferromagnetic version of the models, which can be solved analytically without any approximation, both thermodynamically via a free-energy calculation and dynamically using the generating functional approach. Phase diagrams are discussed and the appearance of two-cycles in the case of synchronous updating is examined. A comparative study is made for the Q-Ising and the Blume-Emery-Griffiths ferromagnets and some interesting physical differences are found. Numerical simulations confirm the results obtained.
We present results on the first excited states for the random-field Ising model. These are based on an exact algorithm, with which we study the excitation energies and the excitation sizes for two- and three-dimensional random-field Ising systems wit
We study domain walls in 2d Ising spin glasses in terms of a minimum-weight path problem. Using this approach, large systems can be treated exactly. Our focus is on the fractal dimension $d_f$ of domain walls, which describes via $<ell >simL^{d_f}$ t
The information theoretic observables entropy (a measure of disorder), excess entropy (a measure of complexity) and multi information are used to analyze ground-state spin configurations for disordered and frustrated model systems in 2D and 3D. For b
The influence of Rashba spin-orbit interaction on the spin dynamics of a topologically disordered hopping system is studied in this paper. This is a significant generalization of a previous investigation, where an ordered (polaronic) hopping system h
Principles of machine learning are applied to models that support skyrmion phases in two dimensions. Successful feature predictions on various phases of the skyrmion model were possible with several layers of convolutional neural network inserted tog