ﻻ يوجد ملخص باللغة العربية
Single-shot readout experiments were performed on the two lowest-energy states of a superconducting qubit with three Josephson junctions embedded in a superconducting loop. We measured the qubit state via switching current Isw of a current-biased dc-SQUID, a quantum detector surrounding the qubit loop. The qubit signals were measured in a small Isw regime of the SQUID, typically less than 100 nA, where the Isw distribution is particularly narrow. The obtained single-shot data indicate that the qubit state is readout, through the flux generated by the qubit persistent-current, as energy eigenstates rather than current eigenstates.
We report single-shot readout of a superconducting flux qubit by using a flux-driven Josephson parametric amplifier (JPA). After optimizing the readout power, gain of the JPA and timing of the data acquisition, we observe the Rabi oscillations with a
We present a systematic study of the phase-coherent dynamics of a superconducting three-Josephson-junction flux qubit. The qubit state is detected with the integrated-pulse method, which is a variant of the pulsed switching DC SQUID method. In this s
We report the characterization of a two-qubit processor implemented with two capacitively coupled tunable superconducting qubits of the transmon type, each qubit having its own non-destructive single-shot readout. The fixed capacitive coupling yields
A nonlinear resonant circuit comprising a SQUID magnetometer and a parallel capacitor is studied as a readout scheme for a persistent-current (PC) qubit. The flux state of the qubit is detected as a change in the Josephson inductance of the SQUID mag
The future development of quantum information using superconducting circuits requires Josephson qubits [1] with long coherence times combined to a high-fidelity readout. Major progress in the control of coherence has recently been achieved using circ