ترغب بنشر مسار تعليمي؟ اضغط هنا

Single-Shot Readout of Macroscopic Quantum Superposition State in a Superconducting Flux Qubit

66   0   0.0 ( 0 )
 نشر من قبل Kouichi Semba
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Single-shot readout experiments were performed on the two lowest-energy states of a superconducting qubit with three Josephson junctions embedded in a superconducting loop. We measured the qubit state via switching current Isw of a current-biased dc-SQUID, a quantum detector surrounding the qubit loop. The qubit signals were measured in a small Isw regime of the SQUID, typically less than 100 nA, where the Isw distribution is particularly narrow. The obtained single-shot data indicate that the qubit state is readout, through the flux generated by the qubit persistent-current, as energy eigenstates rather than current eigenstates.



قيم البحث

اقرأ أيضاً

We report single-shot readout of a superconducting flux qubit by using a flux-driven Josephson parametric amplifier (JPA). After optimizing the readout power, gain of the JPA and timing of the data acquisition, we observe the Rabi oscillations with a contrast of 74% which is mainly limited by the bandwidth of the JPA and the energy relaxation of the qubit. The observation of quantum jumps between the qubit eigenstates under continuous monitoring indicates the nondestructiveness of the readout scheme.
We present a systematic study of the phase-coherent dynamics of a superconducting three-Josephson-junction flux qubit. The qubit state is detected with the integrated-pulse method, which is a variant of the pulsed switching DC SQUID method. In this s cheme the DC SQUID bias current pulse is applied via a capacitor instead of a resistor, giving rise to a narrow band-pass instead of a pure low-pass filter configuration of the electromagnetic environment. Measuring one and the same qubit with both setups allows a direct comparison. With the capacitive method about four times faster switching pulses and an increased visibility are achieved. Furthermore, the deliberate engineering of the electromagnetic environment, which minimizes the noise due to the bias circuit, is facilitated. Right at the degeneracy point the qubit coherence is limited by energy relaxation. We find two main noise contributions. White noise is limiting the energy relaxation and contributing to the dephasing far from the degeneracy point. 1/f-noise is the dominant source of dephasing in the direct vicinity of the optimal point. The influence of 1/f-noise is also supported by non-random beatings in the Ramsey and spin echo decay traces. Numeric simulations of a coupled qubit-oscillator system indicate that these beatings are due to the resonant interaction of the qubit with at least one point-like fluctuator, coupled especially strongly to the qubit.
119 - A. Dewes , F. R. Ong , V. Schmitt 2011
We report the characterization of a two-qubit processor implemented with two capacitively coupled tunable superconducting qubits of the transmon type, each qubit having its own non-destructive single-shot readout. The fixed capacitive coupling yields the sqrt{iSWAP} two-qubit gate for a suitable interaction time. We reconstruct by state tomography the coherent dynamics of the two-bit register as a function of the interaction time, observe a violation of the Bell inequality by 22 standard deviations after correcting readout errors, and measure by quantum process tomography a gate fidelity of 90%.
A nonlinear resonant circuit comprising a SQUID magnetometer and a parallel capacitor is studied as a readout scheme for a persistent-current (PC) qubit. The flux state of the qubit is detected as a change in the Josephson inductance of the SQUID mag netometer, which in turn mediates a shift in the resonance frequency of the readout circuit. The nonlinearity and resulting hysteresis in the resonant behavior are characterized as a function of the power of both the input drive and the associated resonance peak response. Numerical simulations based on a phenomenological circuit model are presented which display the features of the observed nonlinearity.
The future development of quantum information using superconducting circuits requires Josephson qubits [1] with long coherence times combined to a high-fidelity readout. Major progress in the control of coherence has recently been achieved using circ uit quantum electrodynamics (cQED) architectures [2, 3], where the qubit is embedded in a coplanar waveguide resonator (CPWR) which both provides a well controlled electromagnetic environment and serves as qubit readout. In particular a new qubit design, the transmon, yields reproducibly long coherence times [4, 5]. However, a high-fidelity single-shot readout of the transmon, highly desirable for running simple quantum algorithms or measur- ing quantum correlations in multi-qubit experiments, is still lacking. In this work, we demonstrate a new transmon circuit where the CPWR is turned into a sample-and-hold detector, namely a Josephson Bifurcation Amplifer (JBA) [6, 7], which allows both fast measurement and single-shot discrimination of the qubit states. We report Rabi oscillations with a high visibility of 94% together with dephasing and relaxation times longer than 0:5 mus. By performing two subsequent measurements, we also demonstrate that this new readout does not induce extra qubit relaxation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا