ترغب بنشر مسار تعليمي؟ اضغط هنا

Remarkable change of tunneling conductance in YBCO films in fields up to 32.4T

76   0   0.0 ( 0 )
 نشر من قبل Roy Beck
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We studied the tunneling density of states in YBCO films under strong currents flowing along node directions. The currents were induced by fields of up to 32.4T parallel to the film surface and perpendicular to the $CuO_{2}$ planes. We observed a remarkable change in the tunneling conductance at high fields where the gap-like feature shifts discontinuously from 15meV to a lower bias of 11meV, becoming more pronounced as the field increases. The effect takes place in increasing fields around 9T and the transition back to the initial state occurs around 5T in decreasing fields. We argue that this transition is driven by surface currents induced by the applied magnetic field.



قيم البحث

اقرأ أيضاً

We have studied nodal tunneling into YBa2Cu3O7-x (YBCO) films under magnetic fields. The films orientation was such that the CuO2 planes were perpendicular to the surface with the a and b axis at 450 form the normal. The magnetic field was applied pa rallel to the surface and perpendicular to the CuO2 planes. The Zero Bias Conductance Peak (ZBCP) characteristic of nodal tunneling splits under the effect of surface currents produced by the applied fields. Measuring this splitting under different field conditions, zero field cooled and field cooled, reveals that these currents have different origins. By comparing the field cooled ZBCP splitting to that taken in decreasing fields we deduce a value of the Bean critical current superfluid velocity, and calculate a Bean critical current density of up to 3*10^7 A/cm2 at low temperatures. This tunneling method for the determination of critical currents under magnetic fields has serious advantages over the conventional one, as it avoids having to make high current contacts to the sample.
Since the discovery of iron-based superconductors, a number of theories have been put forward to explain the qualitative origin of pairing, but there have been few attempts to make quantitative, material-specific comparisons to experimental results. The spin-fluctuation theory of electronic pairing, based on first-principles electronic structure calculations, makes predictions for the superconducting gap. Within the same framework, the surface wave functions may also be calculated, allowing, e.g., for detailed comparisons between theoretical results and measured scanning tunneling topographs and spectra. Here we present such a comparison between theory and experiment on the Fe-based superconductor LiFeAs. Results for the homogeneous surface as well as impurity states are presented as a benchmark test of the theory. For the homogeneous system, we argue that the maxima of topographic image intensity may be located at positions above either the As or Li atoms, depending on tip height and the setpoint current of the measurement. We further report the experimental observation of transitions between As and Li-registered lattices as functions of both tip height and setpoint bias, in agreement with this prediction. Next, we give a detailed comparison between the simulated scanning tunneling microscopy images of transition-metal defects with experiment. Finally, we discuss possible extensions of the current framework to obtain a theory with true predictive power for scanning tunneling microscopy in Fe-based systems.
168 - N. Pompeo , V. Galluzzi , R. Rogai 2007
We probe the short-range pinning properties with the application of microwave currents at very high driving frequencies (47.7 GHz) on YBa$_2$Cu$_3$O$_{7-delta}$ films with and without sub-micrometer BaZrO$_3$ inclusions. We explore the temperature an d field ranges 60 K$<T<T_c$ and 0$<mu_0H<$0.8 T, with the field applied along the c-axis. The magnetic field induces a much smaller increase of the microwave resistivity, $Delta rho_1(H)+mathrm{i}Delta rho_2(H)$, in YBa$_2$Cu$_3$O$_{7-delta}$/BaZrO$_3$ with respect to pure YBa$_2$Cu$_3$O$_{7-delta}$. $Delta rho_1(H)$ is slightly superlinear in pure YBa$_2$Cu$_3$O$_{7-delta}$ (suggesting a possible contribution of thermal activation), but linear or sublinear in YBa$_2$Cu$_3$O$_{7-delta}$/BaZrO$_3$ (suggesting a possible suppression of thermal activation as a consequence of BaZrO$_3$ inclusions). These features persist up to close to $T_c$. We discuss our data in terms of the ratio $r=Delta X_s(H)/Delta R_s(H)$ in the framework of the models for the microwave surface impedance in the mixed state. Large $r$ are found in YBa$_2$Cu$_3$O$_{7-delta}$/BaZrO$_3$, with little field dependence. By contrast, smaller values and stronger field dependences are found in pure YBa$_2$Cu$_3$O$_{7-delta}$. We discuss the different field dependence of the pinning constant.
412 - B. Kalisky , P. Aronov , G. Koren 2006
Measurements of the nonlinear flux-flow resistivity $rho$ and the critical vortex velocity $rm v^*_phi$ at high voltage bias close to the instability regime predicted by Larkin and Ovchinnikov cite{LO} are reported along the node and antinode directi ons of the d-wave order parameter in the textit{a-b} plane of epitaxial $YBa_2Cu_3O_{7-delta}$ films. In this pinning-free regime, $rho$ and $rm v^*_phi$ are found to be anisotropic with values in the node direction larger on average by 10% than in the antinode direction. The anisotropy of $rho$ is almost independent of temperature and field. We attribute the observed results to the anisotropic quasiparticle distribution on the Fermi surface of $YBa_2Cu_3O_{7-delta}$.
As established by scanning tunneling microscopy (STM) cleaved surfaces of the high temperature superconductor YBa$_2$Cu$_2$O$_{7-delta}$ develop charge density wave (CDW) modulations in the one-dimensional (1D) CuO chains. At the same time, no signat ures of the CDW have been reported in the spectral function of the chain band previously studied by photoemission. We use soft X-ray angle resolved photoemission (SX-ARPES) to detect a chain-derived surface band that had not been detected in previous work. The $2k_textup{F}$ for the new surface band is found to be 0.55,AA$^{-1}$, which matches the wave vector of the CDW observed in direct space by STM. This reveals the relevance of the Fermi surface nesting for the formation of CDWs in the CuO chains in YBa$_2$Cu$_2$O$_{7-delta}$. In agreement with the short range nature of the CDW order the newly detected surface band exhibits a pseudogap, whose energy scale also corresponds to that observed by STM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا