ﻻ يوجد ملخص باللغة العربية
A numerical method based on the transfer matrix method is developed to calculate the critical temperature of two-layer Ising ferromagnet with a weak inter-layer coupling. The reduced internal energy per site has been accurately calculated for symmetric ferromagnetic case, with the nearest neighbor coupling K1 = K2 = K (where K1 and K2 are the nearest neighbor interaction in the first and second layers, respectively) with inter layer coupling J. The critical temperature as a function of the inter-layer coupling J/K << 1, is obtained for very weak inter-layer interactions,J/K < 0.1 . Also a different function is given for the case of the strong inter-layer interactions (J/K > 1). The importance of these relations is due to the fact that there is no well tabulated data for the critical points versus J/K. We find the value of the shift exponent Phi = Gama is 1.74 for the system with the same intra-layer interaction and 0.5 for the system with different intra-layer interactions.
A new finite-size scaling approach based on the transfer matrix method is developed to calculate the critical temperature of anisotropic two-layer Ising ferromagnet, on strips of r wide sites of square lattices. The reduced internal energy per site h
The Binder cumulant at the phase transition of Ising models on square lattices with ferromagnetic couplings between nearest neighbors and with competing antiferromagnetic couplings between next--nearest neighbors, along only one diagonal, is determin
We present a systematic method to calculate the universal scaling functions for the critical Casimir force and the according potential of the two-dimensional Ising model with various boundary conditions. Therefore we start with the dimer representati
We present results of a Monte Carlo study for the ferromagnetic Ising model with long range interactions in two dimensions. This model has been simulated for a large range of interaction parameter $sigma$ and for large sizes. We observe that the resu
The universal critical point ratio $Q$ is exploited to determine positions of the critical Ising transition lines on the phase diagram of the Ashkin-Teller (AT) model on the square lattice. A leading-order expansion of the ratio $Q$ in the presence o