ﻻ يوجد ملخص باللغة العربية
Electronic structure calculations for layered zincblende semiconductors are described within a restricted basis formalism which naturally and non-perturbatively accomodates both crystalline inversion asymmetry and cubic anisotropy. These calculations are applied to calculate the electron spin decoherence times $T_1$ and $T_2$ due to precessional decoherence in quantum wells. Distinctly different dependences of spin coherence times on mobility, quantization energy, and temperature are found from perturbative calculations. Quantitative agreement between these calculations and experiments is found for GaAs/AlGaAs, InGaAs/InP, and GaSb/AlSb $(001)$-grown quantum wells. The electron spin coherence times for CdZnSe/ZnSe II-VI quantum wells are calculated, and calculations of InGaAs/GaAs quantum wells appropiate for comparison with spin-LED structures are also presented.
A theory for longitudinal (T1) and transverse (T2) electron spin coherence times in zincblende semiconductor quantum wells is developed based on a non-perturbative nanostructure model solved in a fourteen-band restricted basis set. Distinctly differe
We present a detailed experimental and theoretical analysis of the spin dynamics of two-dimensional electron gases (2DEGs) in a series of n-doped GaAs/AlGaAs quantum wells. Picosecond-resolution polarized pump-probe reflection techniques were applied
We performed ultrafast degenerate pump-probe spectroscopy on monolayer WSe2 near its exciton resonance. The observed differential reflectance signals exhibit signatures of strong many-body interactions including the exciton-exciton interaction and fr
The realization of mixtures of excitons and charge carriers in van-der-Waals materials presents a new frontier for the study of the many-body physics of strongly interacting Bose-Fermi mixtures. In order to derive an effective low-energy model for su
Hexagonal boron nitride (BN), one of the very few layered insulators, plays a crucial role in 2D materials research. In particular, BN grown with a high pressure technique has proven to be an excellent substrate material for graphene and related 2D m