ترغب بنشر مسار تعليمي؟ اضغط هنا

Coulomb drag in high Landau levels

122   0   0.0 ( 0 )
 نشر من قبل Igor V. Gornyi
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent experiments on Coulomb drag in the quantum Hall regime have yielded a number of surprises. The most striking observations are that the Coulomb drag can become negative in high Landau levels and that its temperature dependence is non-monotonous. We develop a systematic diagrammatic theory of Coulomb drag in strong magnetic fields explaining these puzzling experiments. The theory is applicable both in the diffusive and the ballistic regimes; we focus on the experimentally relevant ballistic regime (interlayer distance $a$ smaller than the cyclotron radius $R_c$). It is shown that the drag at strong magnetic fields is an interplay of two contributions arising from different sources of particle-hole asymmetry, namely the curvature of the zero-field electron dispersion and the particle-hole asymmetry associated with Landau quantization. The former contribution is positive and governs the high-temperature increase in the drag resistivity. On the other hand, the latter one, which is dominant at low $T$, has an oscillatory sign (depending on the difference in filling factors of the two layers) and gives rise to a sharp peak in the temperature dependence at $T$ of the order of the Landau level width.



قيم البحث

اقرأ أيضاً

Developments in the physics of 2D electron systems during the last decade have revealed a new class of nonequilibrium phenomena in the presence of a moderately strong magnetic field. The hallmark of these phenomena is magnetoresistance oscillations g enerated by the external forces that drive the electron system out of equilibrium. The rich set of dramatic phenomena of this kind, discovered in high mobility semiconductor nanostructures, includes, in particular, microwave radiation-induced resistance oscillations and zero-resistance states, as well as Hall field-induced resistance oscillations and associated zero-differential resistance states. We review the experimental manifestations of these phenomena and the unified theoretical framework for describing them in terms of a quantum kinetic equation. The survey contains also a thorough discussion of the magnetotransport properties of 2D electrons in the linear response regime, as well as an outlook on future directions, including related nonequilibrium phenomena in other 2D electron systems.
256 - X. Fu , Q. Shi , M. A. Zudov 2020
It is well established that the ground states of a two-dimensional electron gas with half-filled high ($N ge 2$) Landau levels are compressible charge-ordered states, known as quantum Hall stripe (QHS) phases. The generic features of QHSs are a maxim um (minimum) in a longitudinal resistance $R_{xx}$ ($R_{yy}$) and a non-quantized Hall resistance $R_H$. Here, we report on emergent minima (maxima) in $R_{xx}$ ($R_{yy}$) and plateau-like features in $R_H$ in half-filled $N ge 3$ Landau levels. Remarkably, these unexpected features develop at temperatures considerably lower than the onset temperature of QHSs, suggesting a new ground state.
A low-disorder, two-dimensional electron system (2DES) subjected to a large perpendicular magnetic field and cooled to very low temperatures provides a rich platform for studies of many-body quantum phases. The magnetic field quenches the electrons k inetic energy and quantizes the energy into a set of Landau levels, allowing the Coulomb interaction to dominate. In excited Landau levels, the fine interplay between short- and long-range interactions stabilizes bubble phases, Wigner crystals with more than one electron per unit cell. Here we present the screening properties of bubble phases, probed via a simple capacitance technique where the 2DES is placed between a top and a bottom gate and the electric field penetrating through the 2DES is measured. The bubbles formed at very low temperatures screen the electric field poorly as they are pinned by the residual disorder potential, allowing a large electric field to reach the top gate. As the temperature is increased, the penetrating electric field decreases and, surprisingly, exhibits a pronounced minimum at a temperature that appears to coincide with the melting temperature of the bubble phase. We deduce a quantitative phase diagram for the transition from bubble to liquid phases for Landau level filling factors $4leq uleq5$.
The intense search for topological superconductivity is inspired by the prospect that it hosts Majorana quasiparticles. We explore in this work the optimal design for producing topological superconductivity by combining a quantum Hall state with an o rdinary superconductor. To this end, we consider a microscopic model for a topologically trivial two-dimensional p-wave superconductor exposed to a magnetic field, and find that the interplay of superconductivity and Landau level physics yields a rich phase diagram of states as a function of $mu/t$ and $Delta/t$, where $mu$, $t$ and $Delta$ are the chemical potential, hopping strength, and the amplitude of the superconducting gap. In addition to quantum Hall states and topologically trivial p-wave superconductor, the phase diagram also accommodates regions of topological superconductivity. Most importantly, we find that application of a non-uniform, periodic magnetic field produced by a square or a hexagonal lattice of $h/e$ fluxoids greatly facilitates regions of topological superconductivity in the limit of $Delta/trightarrow 0$. In contrast, a uniform magnetic field, a hexagonal Abrikosov lattice of $h/2e$ fluxoids, or a one dimensional lattice of stripes produces topological superconductivity only for sufficiently large $Delta/t$.
163 - P. Schwab , M. Dzierzawa 2011
Two recent experiments successfully observed Landau levels in the tunneling spectra of the topological insulator Bi2Se3. To mimic the influence of a scanning tunneling microscope tip on the Landau levels we solve the two-dimensional Dirac equation in the presence of a localized electrostatic potential. We find that the STM tip not only shifts the Landau levels, but also suppresses for a realistic choice of parameters the negative branch of Landau levels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا