ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetothermopower and Magnetoresistivity of RuSr2Gd1-xLaxCu2O8 (x=0, 0.1)

252   0   0.0 ( 0 )
 نشر من قبل Liu C.-J.
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report measurements of magnetothermopower and magnetoresistivity as a function of temperature on RuSr2Gd1-xLaxCu2O8 (x = 0, 0.1). The normal-state thermopower shows a dramatic decrease after applying a magnetic field of 5 T, whereas the resistivity shows only a small change after applying the same field. Our results suggest that RuO2 layers are conducting and the magnetic field induced decrease of the overall thermopower is caused by the decrease of partial thermopower decrease associated with the spin entropy decrease of the carriers in the RuO2 layers.



قيم البحث

اقرأ أيضاً

The observation of non-saturating classical linear magnetoresistivity has been an enigmatic phenomenon in solid state physics. We present a study of a two-dimensional ohmic conductor, including local Hall effect and a self-consistent consideration of the environment. An equivalent-circuit scheme delivers a simple and convincing argument why the magnetoresistivity is linear in strong magnetic field, provided that current and biasing electric field are misaligned by a nonlocal mechanism. A finite-element model of a two-dimensional conductor is suited to display the situations that create such deviating currents. Besides edge effects next to electrodes, charge carrier density fluctuations are efficiently generating this effect. However, mobility fluctuations that have frequently been related to linear magnetoresistivity are barely relevant. Despite its rare observation, linear magnetoresitivity is rather the rule than the exception in a regime of low charge carrier densities, misaligned current pathways and strong magnetic field.
The in-plane ($rho_{ab}$) and c-axis ($rho_c$) resistivities, and the magnetoresistivity of single crystals $Na_xCoO_2$ with x = 0.7, 0.5 and 0.3 were studied systematically. $rho_{ab}(T)$ shows similar temperature dependence between $Na_{0.3}CoO_2$ and $Na_{0.7}CoO_2$, while $rho_c(T)$ is quite different. A dimensional crossover from two to three occurs with decreasing Na concentration from 0.7 to 0.3. The angular dependence of in-plane magnetoresistivity for 0.5 sample shows a emph{d-wave-like} symmetry at 2K, while the emph{p-wave-like} symmetry at 20 K. These results give an evidence for existence of a emph{spin ordering orientation} below 20 K turned by external field, like the stripes in cuprates.
We study effects of nonmagnetic impurities on the competition between the superconducting and electron-hole pairing. We show that disorder can result in coexistence of these two types of ordering in a uniform state, even when in clean materials they are mutually exclusive.
Our general interest is in self-consistent-field (scf) theories of disordered fermions. They generate physically relevant sub-ensembles (scf-ensembles) within a given Altland-Zirnbauer class. We are motivated to investigate such ensembles (i) by the possibility to discover new fixed points due to (long-range) interactions; (ii) by analytical scf-theories that rely on partial self-consistency approximations awaiting a numerical validation; (iii) by the overall importance of scf-theories for the understanding of complex interaction-mediated phenomena in terms of effective single-particle pictures. In this paper we present an efficient, parallelized implementation solving scf-problems with spatially local fields by applying a kernel-polynomial approach. Our first application is the Boguliubov-deGennes (BdG) theory of the attractive-$U$ Hubbard model in the presence of on-site disorder; the scf-fields are the particle density $n(mathbf{r})$ and the gap function $Delta(mathbf{r})$. For this case, we reach system sizes unprecedented in earlier work. They allow us to study phenomena emerging at scales substantially larger than the lattice constant, such as the interplay of multifractality and interactions, or the formation of superconducting islands. For example, we observe that the coherence length exhibits a non-monotonic behavior with increasing disorder strength already at moderate $U$. With respect to methodology our results are important because we establish that partial self-consistency (energy-only) schemes as typically employed in analytical approaches tend to miss qualitative physics such as island formation.
We investigate the effect of disordered vacancies on the normal-state electronic structure of the newly discovered alkali-intercalated iron selenide superconductors. To this end we use a recently developed Wannier function based method to calculate f rom first principles the configuration-averaged spectral function <A(k,w)> of K0.8Fe1.6Se2 with disordered Fe and K vacancies. We find that the disorder can suppress the expected Fermi surface reconstruction without completely destroying the Fermi surface. More interestingly, the disorder effect raises the chemical potential significantly, giving enlarged electron pockets almost identical to highly doped KFe2Se2, without adding carriers to the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا