ﻻ يوجد ملخص باللغة العربية
The formation of a metal/PTCDA (3, 4, 9, 10-perylenetetracarboxylic dianhydride) interface barrier is analyzed using weak-chemisorption theory. The electronic structure of the uncoupled PTCDA molecule and of the metal surface is calculated. Then, the induced density of interface states is obtained as a function of these two electronic structures and the interaction between both systems. This induced density of states is found to be large enough (even if the metal/PTCDA interaction is weak) for the definition of a Charge Neutrality Level for PTCDA, located 2.45 eV above the highest occupied molecular orbital. We conclude that the metal/PTCDA interface molecular level alignment is due to the electrostatic dipole created by the charge transfer between the two solids.
The barrier formation for metal/organic semiconductor interfaces is analyzed within the Induced Density of Interface States (IDIS) model. Using weak chemisorption theory, we calculate the induced density of states in the organic energy gap and show t
The issue of the net charge at insulating oxide interfaces is shortly reviewed with the ambition of dispelling myths of such charges being affected by covalency and related charge density effects. For electrostatic analysis purposes, the net charge a
Hydrogen as a fuel can be stored safely with high volumetric density in metals. It can, however, also be detrimental to metals causing embrittlement. Understanding fundamental behavior of hydrogen at atomic scale is key to improve the properties of m
The physical origin of Fermi level pinning (FLP) at metal/Ge interfaces has been argued over a long period. Using the Fe$_{3}$Si/Ge(111) heterostructure developed originally, we can explore electrical transport properties through atomically matched m
The Dzyaloshinskii Moriya Interaction (DMI) at the heavy metal (HM) and ferromagnetic metal (FM) interface has been recognized as a key ingredient in spintronic applications. Here we investigate the chemical trend of DMI on the 5d band filling (5d^3~