ترغب بنشر مسار تعليمي؟ اضغط هنا

Rigorous Born Approximation and beyond for the Spin-Boson Model

45   0   0.0 ( 0 )
 نشر من قبل David DiVincenzo
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. P. DiVincenzo




اسأل ChatGPT حول البحث

Within the lowest-order Born approximation, we present an exact calculation of the time dynamics of the spin-boson model in the ohmic regime. We observe non-Markovian effects at zero temperature that scale with the system-bath coupling strength and cause qualitative changes in the evolution of coherence at intermediate times of order of the oscillation period. These changes could significantly affect the performance of these systems as qubits. In the biased case, we find a prompt loss of coherence at these intermediate times, whose decay rate is set by $sqrt{alpha}$, where $alpha$ is the coupling strength to the environment. We also explore the calculation of the next order Born approximation: we show that, at the expense of very large computational complexity, interesting physical quantities can be rigorously computed at fourth order using computer algebra, presented completely in an accompanying Mathematica file. We compute the $O(alpha)$ corrections to the long time behavior of the system density matrix; the result is identical to the reduced density matrix of the equilibrium state to the same order in $alpha$. All these calculations indicate precision experimental tests that could confirm or refute the validity of the spin-boson model in a variety of systems.

قيم البحث

اقرأ أيضاً

222 - S. M. Badalyan , G. Vignale , 2007
We study the spin Coulomb drag in a quasi-two-dimensional electron gas beyond the random phase approximation (RPA). We find that the finite transverse width of the electron gas causes a significant reduction of the spin Coulomb drag. This reduction, however, is largely compensated by the enhancement coming from the inclusion of many-body local field effects beyond the RPA, thereby restoring good agreement with the experimental observations by C. P. Weber textit{et al.}, Nature, textbf{437}, 1330 (2005).
Ramsey spectroscopy has become a powerful technique for probing non-equilibrium dynamics of internal (pseudospin) degrees of freedom of interacting systems. In many theoretical treatments, the key to understanding the dynamics has been to assume the external (motional) degrees of freedom are decoupled from the pseudospin degrees of freedom. Determining the validity of this approximation -- known as the spin model approximation -- is complicated, and has not been addressed in detail. Here we shed light in this direction by calculating Ramsey dynamics exactly for two interacting spin-1/2 particles in a harmonic trap. We focus on $s$-wave-interacting fermions in quasi-one and two-dimensional geometries. We find that in 1D the spin model assumption works well over a wide range of experimentally-relevant conditions, but can fail at time scales longer than those set by the mean interaction energy. Surprisingly, in 2D a modified version of the spin model is exact to first order in the interaction strength. This analysis is important for a correct interpretation of Ramsey spectroscopy and has broad applications ranging from precision measurements to quantum information and to fundamental probes of many-body systems.
48 - Tao Liu , Mang Feng , Lei Li 2012
We study the breaking of parity in the spin-boson model and demonstrate unique scaling behavior of the magnetization and entanglement around the critical points for the parity breaking after suppressing the infrared divergence existing inherently in the spectral functions for Ohmic and sub-Ohmic dissipations. Our treatment is basically analytical and of generality for all types of the bath. We argue that the conventionally employed spectral function is not fully reasonable and the previous justification of quantum phase transition for localization needs to be more seriously reexamined.
We study both static and transport properties of model quantum dots, employing density functional theory as well as (numerically) exact methods. For the lattice model under consideration the accuracy of the local-density approximation generally is po or. For weak interaction, however, accurate results are achieved within the optimized effective potential method, while for intermediate interaction strengths a method combining the exact diagonalization of small clusters with density functional theory is very successful. Results obtained from the latter approach yield very good agreement with density matrix renormalization group studies, where the full Hamiltonian consisting of the dot and the attached leads has to be diagonalized. Furthermore we address the question whether static density functional theory is able to predict the exact linear conductance through the dot correctly - with, in general, negative answer.
We propose a numerical technique based on a combination of short-iterative Lanczos and exact diagonalization methods, suitable for simulating the time evolution of the reduced density matrix of a single qubit interacting with an environment. By choos ing a mode discretization method and a flexible bath states truncation scheme, we are able to include in the physical description multiple-excitation processes, beyond weak coupling and Markov approximations. We apply our technique to the simulation of three different model Hamiltonians, which are relevant in the field of adiabatic quantum computation. We compare our results with those obtained on the basis of the widely used Lindblad master equation, as well as with well-known exact and approximated approaches. We show that our method is able to recover the thermodynamic behavior of the qubit-bath system, beyond the Born-Markov approximation. Finally, we show that even in the case of the adiabatic quantum annealing of a single qubit the bath can be beneficial in reaching the reduced system ground state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا