ترغب بنشر مسار تعليمي؟ اضغط هنا

Herd Behaviors in Financial Markets

76   0   0.0 ( 0 )
 نشر من قبل Kyungsik Kim
 تاريخ النشر 2004
  مجال البحث فيزياء مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the herd behavior of returns for the yen-dollar exchange rate in the Japanese financial market. It is obtained that the probability distribution $P(R)$ of returns $R$ satisfies the power-law behavior $P(R) simeq R^{-beta}$ with the exponents $ beta=3.11$(the time interval $tau=$ one minute) and 3.36($tau=$ one day). The informational cascade regime appears in the herding parameter $Hge 2.33$ at $tau=$ one minute, while it occurs no herding at $tau=$ one day. Especially, we find that the distribution of normalized returns shows a crossover to a Gaussian distribution at one time step $Delta t=1$ day.



قيم البحث

اقرأ أيضاً

We study the rank distribution, the cumulative probability, and the probability density of returns of stock prices of listed firms traded in four stock markets. We find that the rank distribution and the cumulative probability of stock prices traded in are consistent approximately with the Zipfs law or a power law. It is also obtained that the probability density of normalized returns for listed stocks almost has the form of the exponential function. Our results are compared with those of other numerical calculations.
We use standard physics techniques to model trading and price formation in a market under the assumption that order arrival and cancellations are Poisson random processes. This model makes testable predictions for the most basic properties of a marke t, such as the diffusion rate of prices, which is the standard measure of financial risk, and the spread and price impact functions, which are the main determinants of transaction cost. Guided by dimensional analysis, simulation, and mean field theory, we find scaling relations in terms of order flow rates. We show that even under completely random order flow the need to store supply and demand to facilitate trading induces anomalous diffusion and temporal structure in prices.
We study by theoretical analysis and by direct numerical simulation the dynamics of a wide class of asynchronous stochastic systems composed of many autocatalytic degrees of freedom. We describe the generic emergence of truncated power laws in the si ze distribution of their individual elements. The exponents $alpha$ of these power laws are time independent and depend only on the way the elements with very small values are treated. These truncated power laws determine the collective time evolution of the system. In particular the global stochastic fluctuations of the system differ from the normal Gaussian noise according to the time and size scales at which these fluctuations are considered. We describe the ranges in which these fluctuations are parameterized respectively by: the Levy regime $alpha < 2$, the power law decay with large exponent ($alpha > 2$), and the exponential decay. Finally we relate these results to the large exponent power laws found in the actual behavior of the stock markets and to the exponential cut-off detected in certain recent measurement.
This paper analyses the behaviour of volatility for several international stock market indexes, namely the SP 500 (USA), the Nikkei (Japan), the PSI 20 (Portugal), the CAC 40 (France), the DAX 30 (Germany), the FTSE 100 (UK), the IBEX 35 (Spain) and the MIB 30 (Italy), in the context of non-stationarity. Our empirical results point to the evidence of the existence of integrated behaviour among several of those stock market indexes of different dimensions. It seems, therefore, that the behaviour of these markets tends to some uniformity, which can be interpreted as the existence of a similar behaviour facing to shocks that may affect the worldwide economy. Whether this is a cause or a consequence of market globalization is an issue that may be stressed in future work.
Financial correlation matrices measure the unsystematic correlations between stocks. Such information is important for risk management. The correlation matrices are known to be ``noise dressed. We develop a new and alternative method to estimate this noise. To this end, we simulate certain time series and random matrices which can model financial correlations. With our approach, different correlation structures buried under this noise can be detected. Moreover, we introduce a measure for the relation between noise and correlations. Our method is based on a power mapping which efficiently suppresses the noise. Neither further data processing nor additional input is needed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا