ﻻ يوجد ملخص باللغة العربية
We describe the realization of a magnetically guided beam of cold rubidium atoms, with a flux of $7times 10^9$ atoms/s, a temperature of 400 $mu$K and a mean velocity of 1 m/s. The rate of elastic collisions within the beam is sufficient to ensure thermalization. We show that the evaporation induced by a radio-frequency wave leads to appreciable cooling and increase in phase space density. We discuss the perspectives to reach the quantum degenerate regime using evaporative cooling.
In this paper, we report our progress towards the realization of a continuous guided atomic beam in the degenerate regime. So far, we have coupled into a magnetic guide a flux of a few $10^{8}$ atoms/s at 60 cm/s with a propagation in the guide over
We report on our recent progress in the manipulation and cooling of a magnetically guided, high flux beam of $^{87}{rm Rb}$ atoms. Typically $7times 10^9$ atoms per second propagate in a magnetic guide providing a transverse gradient of 800 G/cm, wit
In this report we demonstrate a novel concept for a planar cavity polariton beam amplifier using non-resonant excitation. In contrast to resonant excitation schemes, background carriers are injected which form excitons, providing both gain and a repu
The Laplace operator encodes the behaviour of physical systems at vastly different scales, describing heat flow, fluids, as well as electric, gravitational, and quantum fields. A key input for the Laplace equation is the curvature of space. Here we d
We report on the creation of a degenerate Fermi gas consisting of a balanced mixture of atoms in three different hyperfine states of $^6$Li. This new system consists of three distinguishable Fermions with different and tunable interparticle scatterin