ﻻ يوجد ملخص باللغة العربية
We have carried out an ultrahigh-field cyclotron resonance study of p-type In1-xMnxAs films, with Mn composition x ranging from 0% to 2.5%, grown on GaAs by low-temperature molecular-beam epitaxy. Pulsed magnetic fields up to 500 T were used to make cyclotron resonance observable in these low-mobility samples. The clear observation of hole cyclotron resonance is direct evidence of the existence of a large number of itinerant, effective-mass-type holes rather than localized d-like holes. It further suggests that the p-d exchange mechanism is more favorable than the double exchange mechanism in this narrow gap InAs-based dilute magnetic semiconductor. In addition to the fundamental heavy-hole and light-hole cyclotron resonance absorption appearing near the high-magnetic-field quantum limit, we observed many inter-Landau-level absorption bands whose transition probabilities are stronglydependent on the sense of circular polarization of the incident light.
Accurate determination of carrier densities in ferromagnetic semiconductors by Hall measurements is hindered by the anomalous Hall effect, and thus alternative methods are being sought. Here, we propose that cyclotron resonance (CR) is an excellent m
We report the observation of hole cyclotron resonance (CR) in InMnAs/(Al,Ga)Sb heterostructures in a wide temperature range covering both the paramagnetic and ferromagnetic phases. We observed two pronounced resonances that exhibit drastic changes in
Knowing the band structure of materials is one of the prerequisites to understand their properties. Therefore, especially in the last decades, angle-resolved photoemission spectroscopy (ARPES) has become a highly demanded experimental tool to investi
We have prepared the dilute magnetic semiconductor (DMS) InMnAs with different Mn concentrations by ion implantation and pulsed laser melting. The Curie temperature of the In1-xMnxAs epilayer depends on the Mn concentration x, reaching 82 K for x=0.1
Three-dimensional topological Dirac semimetals have hitherto stimulated unprecedented research interests as a new class of quantum materials. Breaking certain types of symmetries has been proposed to enable the manipulation of Dirac fermions; and tha