ﻻ يوجد ملخص باللغة العربية
We present the temperature dependence of the specific heat, without external magnetic field and with H= 9 T, for LaMnO3, La1.35Sr1.65Mn2O7, La1.5Sr0.5NiO4 and La1.5Sr0.5CoO4 single crystals. We found that spin-wave excitations in the ferromagnetic and bilayer-structure La1.35Sr1.65Mn2O7 were suppressed by the 9 T magnetic field. On the other hand, the external magnetic field had no effect in the specific heat of the other three antiferromagnetic samples. Also, the electronic part of the interactions were removed at very low temperatures in the La1.5Sr0.5NiO4 single crystal, even with a zero applied magnetic field. Below 4 K, we found that the specific heat data for La1.35Sr1.65Mn2O7 and La1.5Sr0.5NiO4 crystals could be fitted to an exponential decay law. Detailed magnetization measurements in this low temperature interval showed the existence of a peak close to 2 K. Both results, magnetizations and specific heat suggest the existence of an anisotropy gap in the energy spectrum of La1.35Sr1.65Mn2O7 and La1.5Sr0.5NiO4 compounds.
A novel macroscopically degenerate state called kagome ice, which was recently found in a spin ice compound Dy2Ti2O7 in a magnetic field applied along the [111] direction of the cubic unit cell, is studied by specific heat measurements. The residual
Specific heat measurements were used to study the magnetic phase transition in Ga1-xMnxAs. Two different types of Ga1-xMnxAs samples have been investigated. The sample with a Mn concentration of 1.6% shows insulating behavior, and the sample with a M
Comprehensive low-temperature specific heat data C(T,H) of Na_0.35CoO2-1.3H_2O with temperature T down to 0.6 K and the magnetic field H up to 8 T are presented. For the normal state, the values of gamma_n=13.94 mJ/mol K2, and Debye temperature 362 K
Both amorphous and crystalline materials frequently exhibit low temperature specific heats in excess of what is predicted using the Debye model. The signature of this excess specific heat is a peak observed in $C/T^3$ textit{versus} $T$. To understan
We report specific heat capacity measurements on a LiFeAs single crystal at temperatures down to 400 mK and magnetic fields up to 9 Tesla. A small specific heat jump at Tc and finite residual density of states at T=0 K in the superconducting (SC) sta