ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutron Scattering Investigation of the Spin Ice State in Dy2Ti2O7

64   0   0.0 ( 0 )
 نشر من قبل Tom Fennell
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dy2Ti2O7 has been advanced as an ideal spin ice. We present a neutron scattering investigation of a sample of 162Dy2Ti2O7. The scattering intensity has been mapped in zero applied field in the hhl and hk0 planes at temperatures between 0.05 K and 20 K. The measured diffuse scattering (in the static approximation) has been compared to that predicted by the dipolar spin ice model. The comparison is good, except at the Brillouin zone boundaries where extra scattering appears in the experimental data. It is concluded that the dipolar spin ice model provides a successful basis for understanding Dy2Ti2O7, but that there are issues which remain to be clarified.

قيم البحث

اقرأ أيضاً

Neutron scattering, a.c. magnetic susceptibility and specific heat studies have been carried out on polycrystalline Dy2Zr2O7. Unlike the pyrochlore spin ice Dy2Ti2O7, Dy2Zr2O7 crystallizes into the fluorite structure and the magnetic Dy3+ moments ran domly reside on the corner-sharing tetrahedral sublattice with non-magnetic Zr ions. Antiferromagnetic spin correlations develop below 10 K but remain dynamic down to 40 mK. These correlations extend over the length of two tetrahedra edges and grow to 6 nearest neighbors with the application of a 20 kOe magnetic field. No Paulings residual entropy was observed and by 8 K the full entropy expected for a two level system is released. We propose that the disorder melts the spin ice state seen in the chemically ordered Dy2Ti2O7 compound, but the spins remain dynamic in a disordered, liquid-like state and do not freeze into a glass-like state that one might intuitively expect.
103 - M. Orendac , J. Hanko , E. Cizmar 2006
The magnetocaloric effect of polycrystalline samples of pure and Y-doped dipolar spin ice Dy2Ti2O7 was investigated at temperatures from nominally 0.3 K to 6 K and in magnetic fields of up to 2 T. As well as being of intrinsic interest, it is propose d that the magnetocaloric effect may be used as an appropriate tool for the qualitative study of slow relaxation processes in the spin ice regime. In the high temperature regime the temperature change on adiabatic demagnetization was found to be consistent with previously published entropy versus temperature curves. At low temperatures (T < 0.4 K) cooling by adiabatic demagnetization was followed by an irreversible rise in temperature that persisted after the removal of the applied field. The relaxation time derived from this temperature rise was found to increase rapidly down to 0.3 K. The data near to 0.3 K indicated a transition into a metastable state with much slower relaxation, supporting recent neutron scattering results. In addition, magnetic dilution of 50 % concentration was found to significantly prolong the dynamical response in the milikelvin temperature range, in contrast with results reported for higher temperatures at which the spin correlations are suppressed. These observations are discussed in terms of defects and loop correlations in the spin ice state.
Neutron diffraction has been used to investigate the magnetic correlations in single crystals of the spin ice materials Ho2Ti2O7 and Dy2Ti2O7 in an external magnetic field applied along either the [001] or [1-10] crystallographic directions. With the field applied along [001] a long range ordered groundstate is selected from the spin ice manifold. With the field applied along [1-10] the experiments show that the spin system is separated into parallel (alpha) and perpendicular (beta) chains with respect to the field. This leads to partial ordering and the appearance of quasi-one-dimensional magnetic structures. In both field orientations this frustrated spin system is defined by the appearance of metastable states, magnetization plateaux and unusually slow, field regulated dynamics.
While sources of magnetic fields - magnetic monopoles - have so far proven elusive as elementary particles, several scenarios have been proposed recently in condensed matter physics of emergent quasiparticles resembling monopoles. A particularly simp le proposition pertains to spin ice on the highly frustrated pyrochlore lattice. The spin ice state is argued to be well-described by networks of aligned dipoles resembling solenoidal tubes - classical, and observabl
Spin ices, frustrated magnetic materials analogous to common water ice, are exemplars of high frustration in three dimensions. Recent experimental studies of the low-temperature properties of the paradigmatic Dy$_2$Ti$_2$O$_7$ spin ice material, in p articular whether the predicted transition to long-range order occurs, raise questions as per the currently accepted microscopic model of this system. In this work, we combine Monte Carlo simulations and mean-field theory calculations to analyze data from magnetization, elastic neutron scattering and specific heat measurements on Dy$_2$Ti$_2$O$_7$. We also reconsider the possible importance of the nuclear specific heat, $C_{rm nuc}$, in Dy$_2$Ti$_2$O$_7$. We find that $C_{rm nuc}$ is not entirely negligible below a temperature $sim 0.5$ K and must be taken into account in a quantitative analysis of the calorimetric data of this compound below that temperature. We find that small effective exchange interactions compete with the magnetostatic dipolar interaction responsible for the main spin ice phenomenology. This causes an unexpected refrustration of the long-range order that would be expected from the incompletely self-screened dipolar interaction and which positions the material at the boundary between two competing classical long-range ordered ground states. This allows for the manifestation of new physical low-temperature phenomena in Dy$_2$Ti$_2$O$_7$, as exposed by recent specific heat measurements. We show that among the four most likely causes for the observed upturn of the specific heat at low temperature -- an exchange-induced transition to long-range order, quantum non-Ising (transverse) terms in the effective spin Hamiltonian, the nuclear hyperfine contribution and random disorder -- only the last appears to be reasonably able to explain the calorimetric data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا