ترغب بنشر مسار تعليمي؟ اضغط هنا

Interband scattering in MgB2

96   0   0.0 ( 0 )
 نشر من قبل Ricardo Lobo
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The scattering process responsible for connecting the bands remains one of the last open questions on the physical properties of MgB2. Through the analysis of the equilibrium and photo-induced far-infrared properties as well as electron spin resonance of MgB2 we propose a phonon mediated energy transfer process between the bands based on the coupling of quasiparticles to an E2g phonon.



قيم البحث

اقرأ أيضاً

In systems having an anisotropic electronic structure, such as the layered materials graphite, graphene and cuprates, impulsive light excitation can coherently stimulate specific bosonic modes, with exotic consequences for the emergent electronic pro perties. Here we show that the population of E$_{2g}$ phonons in the multiband superconductor MgB$_2$ can be selectively enhanced by femtosecond laser pulses, leading to a transient control of the number of carriers in the {sigma}-electronic subsystem. The nonequilibrium evolution of the material optical constants is followed in the spectral region sensitive to both the a- and c-axis plasma frequencies and modeled theoretically, revealing the details of the $sigma$-$pi$ interband scattering mechanism in MgB$_2$.
70 - G. Ghigo , D. Botta , A. Chiodoni 2005
The microwave properties of polycrystalline MgB2 thin films prepared by the so-called in-situ method are investigated. The characterization of the films at microwave frequencies was obtained by a coplanar resonator technique. The analysis of the expe rimental data results in the determination of penetration depth, surface impedance and complex conductivity. The aim of this work is to set the experimental results in a consistent framework, involving the two-band model in the presence of impurity scattering. The energy gaps are calculated and the contribution of intra- and inter-band scattering is considered. From the comparison between the calculated gap values and the experimental data it turns out that the temperature dependence of the penetration depth can be accounted for by an effective mean energy gap, in agreement with the predictions of Kogan et al. [Phys. Rev. B 69, 132506 (2004)]. On the other hand, the temperature dependence of the real part of the microwave conductivity and of the surface resistance is accounted for by the single smaller gap, in agreement with the work of Jin et al. [Phys. Rev. Lett. 91, 127006 (2003)]. Since these findings rely on the same calculated gap structure, the required consistency is fulfilled.
155 - V. G. Kogan , R. Prozorov 2016
A two-band model with repulsive interband coupling and interband {it transport} (potential) scattering is considered to elucidate their effects on material properties. In agreement with previous work, we find that the bands order parameters $Delta_{1 ,2}$ differ and the large is at the band with a smaller normal density of states (DOS), $N_{n2}<N_{n1}$. However, the bands energy gaps, as determined by the energy dependence of the DOS, are equal due to scattering. For each temperature, the gaps turn zero at a certain critical interband scattering rate, i.e. for strong enough scattering the model material becomes gappless. In the gapless state, the DOS at the band 2 is close to the normal state value, whereas at the band 1 it has a V-shape with non-zero minimum. When the normal bands DOS are mismatched, $N_{n1} e N_{n2}$, the critical temperature $T_c$ is suppressed even in the absence of interband scattering, $T_c(N_{n1})$ has a dome-like shape. With increasing interband scattering, the London penetration depth at low temperatures evolves from being exponentially flat to the power-law and even to near linear behavior in the gapless state, the latter being easily misinterpreted as caused by order parameter nodes.
We apply the new-generation ARPES methodology to the most widely studied cuprate superconductor YBCO. Considering the nodal direction, we found noticeable renormalization effects known as kinks both in the quasiparticle dispersion and scattering rate , the bilayer splitting and evidence for strong interband scattering -- all the characteristic features of the nodal quasiparticles detected earlier in BSCCO. The typical energy scale and the doping dependence of the kinks clearly point to their intimate relation with the spin-1 resonance seen in the neutron scattering experiments. Our findings strongly suggest a universality of the electron dynamics in the bilayer superconducting cuprates and a dominating role of the spin-fluctuations in the formation of the quasiparticles along the nodal direction.
Several angle resolved photoemission spectroscopy (ARPES) studies reveal a poorly nested Fermi surface of LiFeAs, far away from a spin density wave instability, and clear-cut superconducting gap anisotropies. On the other hand a very different, more nested Fermi surface and dissimilar gap anisotropies have been obtained from quasiparticle interference (QPI) data, which were interpreted as arising from intraband scattering within hole-like bands. Here we show that this ARPES-QPI paradox is completely resolved by interband scattering between the hole-like bands. The resolution follows from an excellent agreement between experimental quasiparticle scattering data and T-matrix QPI calculations (based on experimental band structure data), which allows disentangling interband and intraband scattering processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا