ﻻ يوجد ملخص باللغة العربية
The transport critical current of a Niobium (Nb) thick film has been measured for a large range of magnetic field. Its value and variation are quantitatively described in the framework of the pinning of vortices due to boundary conditions at the rough surface, with a contact angle well explained by the spectral analysis of the surface roughness. Increasing the surface roughness using a Focused Ion Beam results also in an increase of the superficial critical current.
We probe the short-range pinning properties with the application of microwave currents at very high driving frequencies (47.7 GHz) on YBa$_2$Cu$_3$O$_{7-delta}$ films with and without sub-micrometer BaZrO$_3$ inclusions. We explore the temperature an
We present the experimental observation of magnetic field line curvature at the surface of a superconducting film by local quantitative magneto-optics. In addition to the knowledge of the full induction field at the superconductor surface yielding th
In this report, we comprehensively study the effect of H$^+$ irradiation on the critical current density, $J_c$, and vortex pinning in FeSe single crystal. It is found that the value of $J_c$ for FeSe is enhanced more than twice after 3-MeV H$^+$ irr
Doping of MgB2 by nano-SiC and its potential for improvement of flux pinning was studied for MgB2-x(SiC)x/2 with x = 0, 0.2 and 0.3 and a 10wt% nano-SiC doped MgB2 samples. Co-substitution of B by Si and C counterbalanced the effects of single-elemen
By the application of a small oscillating magnetic field parallel to the main magnetic field and perpendicular to the transport current, we were able to generate a voltage dip in the I-V curves of Nb$_3$Sn similar to the peak-effect pattern observed