ﻻ يوجد ملخص باللغة العربية
We present a general model study of surface-enhanced resonant Raman scattering and fluorescence focusing on the interplay between electromagnetic effects and the molecular dynamics. Our model molecule is placed close to two Ag nanoparticles, and has two electronic levels. A Franck-Condon mechanism provides electron-vibration coupling. Using realistic parameter values for the molecule we find that an electromagnetic enhancement by 10 orders of magnitude can yield Raman cross-sections $sigma_{R}$ of the order $10^{-14} unit{cm^2}$. We also discuss the dependence of $sigma_{R}$ on incident laser intensity.
We report modifications to the optical properties of fluorophores in the vicinity of noble metal nanotips. The fluorescence from small clusters of quantum dots has been imaged using an apertureless scanning near-field optical microscope. When a sharp
We have investigated the effects of tuning the localized surface plasmon resonances (LSPRs) of silver nanoparticles on the fluorescence intensity, lifetime, and Raman signal from nearby fluorophores. The presence of a metallic structure can alter the
Highly ordered periodic arrays of silver nanoparticles have been fabricated which exhibit surface plasmon resonances in the visible spectrum. We demonstrate the ability of these structures to alter the fluorescence properties of vicinal dye molecules
We introduce a simple two region model where the diffusion constant in a small region around each step on a vicinal surface can differ from that found on the terraces. Steady state results for this model provide a physically suggestive mapping onto k
In metal-enhanced fluorescence (MEF), the localized surface plasmon resonances of metallic nanostructures amplify the absorption of excitation light and assist in radiating the consequent fluorescence of nearby molecules to the far-field. This effect