ﻻ يوجد ملخص باللغة العربية
The magnetic properties of a series of YBa2Cu3O7-x/La2/3Ca1/3MnO3 (YBCO/LC1/3MO) superlattices grown by dc sputtering at high oxygen pressures (3.5 mbar) show the expected ferromagnetic behaviour. However, field cooled hysteresis loops at low temperature show the unexpected existence of exchange bias, effect associated with the existence of ferromagnetic/antiferromagnetic (F/AF) interfaces. The blocking temperature (TB) is found thickness dependent and the exchange bias field (HEB) is found inversely proportional to the FM layer thickness, as expected. The presence of an AF material is probably associated to interface disorder and Mn valence shift towards Mn4+.
A Mn valence instability on La2/3Ca1/3MnO3 thin films, grown on LaAlO3 (001)substrates is observed by x-ray absorption spectroscopy at the Mn L-edge and O K-edge. As-grown samples, in situ annealed at 800 C in oxygen, exhibit a Curie temperature well
The existence of coherent magnetic correlations in the normal phase of cuprate high-temperature superconductors has proven difficult to measure directly. Here we report on a study of ferromagnetic-superconductor bilayers of La2/3Ca1/3MnO3/YBa2Cu3O7 (
Giant Random Telegraph Noise (RTN) in the resistance fluctuation of a macroscopic film of perovskite-type manganese oxide La2/3Ca1/3MnO3 has been observed at various temperatures ranging from 4K to 170K, well below the Curie temperature (TC = 210K).
Surface magnetic properties of perovskite manganites have been a recurrent topic during last years since they play a major role in the implementation of magnetoelectronic devices. Magneto-optical techniques, such as X-ray magnetic circular dichroism,
The electronic structure and equilibrium geometry of La2/3Sr1/3MnO3 are studied theoretically by means of density functional calculations. The doping is treated by introducing holes and a compensating jellium background. The results for the local den