ترغب بنشر مسار تعليمي؟ اضغط هنا

Mass-Enhanced Fermi Liquid Ground State in Na$_{1.5}$Co$_2$O$_4$

161   0   0.0 ( 0 )
 نشر من قبل Kiyotaka Miyoshi
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic, transport, and specific heat measurements have been performed on layered metallic oxide Na$_{1.5}$Co$_2$O$_4$ as a function of temperature $T$. Below a characteristic temperature $T^*$=30$-$40 K, electrical resistivity shows a metallic conductivity with a $T^2$ behavior and magnetic susceptibility deviates from the Curie-Weiss behavior showing a broad peak at $sim$14 K. The electronic specific heat coefficient $gamma$ is $sim$60 mJ/molK$^2$ at 2 K. No evidence for magnetic ordering is found. These behaviors suggest the formation of mass-enhanced Fermi liquid ground state analogous to that in $d$-electron heavy fermion compound LiV$_2$O$_4$.



قيم البحث

اقرأ أيضاً

Muon spin relaxation ($mu$SR) measurements were carried out on SrDy$_2$O$_4$, a frustrated magnet featuring short range magnetic correlations at low temperatures. Zero-field muon spin depolarization measurements demonstrate that fast magnetic fluctua tions are present from $T=300$ K down to 20 mK. The coexistence of short range magnetic correlations and fluctuations at $T=20$ mK indicates that SrDy$_2$O$_4$ features a spin liquid ground state. Large longitudinal fields affect weakly the muon spin depolarization, also suggesting the presence of fast fluctuations. For a longitudinal field of $mu_0H=2$ T, a non-relaxing asymmetry contribution appears below $T=6$ K, indicating considerable slowing down of the magnetic fluctuations as field-induced magnetically-ordered phases are approached.
We report on the effects of introducing magnetic and non-magnetic disorder in the hyperkagome iridate quantum spin liquid (QSL) candidate Na$_4$Ir$_3$O$_8$ by partially replacing Ir$^{4+}$ ($S = 1/2$) with Ru$^{4+}$ ($S = 1$) or Ti$^{4+}$ ($S = 0$). Specifically, we synthesized Na$_4$(Ir$_{1-x}$Ru$_x$)$_3$O$_8 (x = 0.05, 0.10, 0.2, 0.3)$ and Na$_4$Ir$_{2.7}$Ti$_{0.3}$O$_8$ samples and measured electrical transport, AC and DC magnetization, and heat capacity down to $T = 1.8$ K. Na$_4$Ir$_3$O$_8$ is associated with a large Weiss temperature $theta = -650$ K, a broad anomaly in magnetic heat capacity C$_{mag}$ at T $approx25$ K, low temperature power-law heat capacity, and spin glass freezing below $T_f approx 6$ K. We track the change in these characteristic features as Ir is partially substituted by Ru or Ti. We find that for Ru substitution, $theta$ increases and stays negative, the anomaly in C$_{mag}$ is suppressed in magnitude and pushed to lower temperatures, low temperature $C sim T^alpha$ with $alpha$ between $2$ and $3$ and decreasing towards $2$ with increasing $x$, and $T_f$ increases with increase in Ru concentration $x$. For Ti substitution we find that $theta$ and T$_f$ become smaller and the anomaly in $C_{mag}$ is completely suppressed. In addition, introducing non-magnetic Ti leads to the creation of orphan spins which show up in the low temperature magnetic susceptibility.
The A-site spinel material, CoAl2O4, is a physical realization of the frustrated diamond-lattice antiferromagnet, a model in which is predicted to contain unique incommensurate or `spin-spiral liquid ground states. Our previous single-crystal neutron scattering study instead classified it as a `kinetically-inhibited antiferromagnet, where the long ranged correlations of a collinear Neel ground state are blocked by the freezing of domain wall motion below a first-order phase transition at T* = 6.5 K. The current paper expands on our original results in several important ways. New elastic and inelastic neutron measurements are presented that show our initial conclusions are affected by neither the sample measured nor the instrument resolution, while measurements to temperatures as low as T = 250 mK limit the possible role being played by low-lying thermal excitations. Polarized diffuse neutron measurements confirm reports of short-range antiferromagnetic correlations and diffuse streaks of scattering, but major diffuse features are explained as signatures of overlapping critical correlations between neighboring Brillouin zones. Finally, and critically, this paper presents detailed elastic and inelastic measurements of magnetic correlations in a single-crystal of MnAl2O4, which acts as an unfrustrated analogue to CoAl2O4. The unfrustrated material is shown to have a classical continuous phase transition to Neel order at T_N = 39 K, with collective spinwave excitations and Lorentzian-like critical correlations which diverge at the transition. Direct comparison between the two compounds indicates that CoAl2O4 is unique, not in the nature of high-temperature diffuse correlations, but rather in the nature of the frozen state below T*. The higher level of cation inversion in the MnAl2O4 sample indicates that this novel behavior is primarily an effect of greater next-nearest-neighbor exchange.
We investigate the low temperature magnetic properties of a $S=frac{5}{2}$ Heisenberg kagome antiferromagnet, the layered monodiphosphate Li$_9$Fe$_3$(P$_2$O$_7$)$_3$(PO$_4$)$_2$, using magnetization measurements and $^{31}$P nuclear magnetic resonan ce. An antiferromagnetic-type order sets in at $T_{rm N}=1.3$ K and a characteristic magnetization plateau is observed at 1/3 of the saturation magnetization below $T^* sim 5$ K. A moderate $^{31}$P NMR line broadening reveals the development of anisotropic short-range correlations within the plateau phase concomitantly with a gapless spin-lattice relaxation time $T_1 sim k_B T / hbar S$, which both point to the presence of a semiclassical nematic spin liquid state predicted for the Heisenberg kagome antiferromagnetic model.
In an ideal classical pyrochlore antiferromagnet without perturbations, an infinite degeneracy at a ground state leads to absence of a magnetic order and spin-glass transition. Here we present Na$_3$Mn(CO$_3$)$_2$Cl as a new candidate compound where classical spins are coupled antiferromagnetically on the pyrochlore lattice, and report its structural and magnetic properties.The temperature dependences of the magnetic susceptibility and heat capacity, and the magnetization curve are consistent with those of an $S$ = 5/2 pyrochlore lattice antiferromagnet with nearest-neighbor interactions of 2 K. Neither an apparent signature of a spin-glass transition nor a magnetic order is detected in magnetization and heat capacity measurements, or powder neutron diffraction experiments. On the other hand, an antiferromagnetic short-range order from the nearest neighbors is evidenced by the $Q$-dependence of the diffuse scattering which develops around 0.85 AA$^{-1}$. A high degeneracy near the ground state in Na$_3$Mn(CO$_3$)$_2$Cl is supported by the magnetic entropy estimated as almost 4 J K$^{-2}$ mol$^{-1}$ at 0.5 K.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا