ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin and orbital frustration in MnSc_2S_4 and FeSc_2S_4

344   0   0.0 ( 0 )
 نشر من قبل Norbert Buettgen
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Crystal structure, magnetic susceptibility, and specific heat were measured in the normal cubic spinel compounds MnSc_2S_4 and FeSc_2S_4. Down to the lowest temperatures, both compounds remain cubic and reveal strong magnetic frustration. Specifically the Fe compound is characterized by a Curie-Weiss temperature Theta_{CW}= -45 K and does not show any indications of order down to 50 mK. In addition, the Jahn-Teller ion Fe^{2+} is orbitally frustrated. Hence, FeSc_2S_4 belongs to the rare class of spin-orbital liquids. MnSc_2S_4 is a spin liquid for temperatures T > T_N approx 2 K.

قيم البحث

اقرأ أيضاً

The influence of spin-orbit coupling (SOC) on the physical properties of the 5d2 system Sr2MgOsO6 is probed via a combination of magnetometry, specific heat measurements, elastic and inelastic neutron scattering, and density functional theory calcula tions. Although a significant degree of frustration is expected, we find that Sr2MgOsO6 orders in a type I antiferromagnetic structure at the remarkably high temperature of 108 K. The measurements presented allow for the first accurate quantification of the size of the magnetic moment in a 5d2 system of 0.60(2) muB - a significantly reduced moment from the expected value for such a system. Furthermore, significant anisotropy is identified via a spin excitation gap, and we confirm by first principles calculations that SOC not only provides the magnetocrystalline anisotropy, but also plays a crucial role in determining both the ground state magnetic order and the size of the local moment in this compound. Through comparison to Sr2ScOsO6, it is demonstrated that SOC-induced anisotropy has the ability to relieve frustration in 5d2 systems relative to their 5d3 counterparts, providing an explanation of the high TN found in Sr2MgOsO6.
We expand the concept of frustration in Mott insulators and quantum spin liquids to metals with flat bands. We show that when inter-orbital hopping $t_2$ dominates over intra-orbital hopping $t_1$, in a multiband system with strong spin-orbit couplin g $lambda$, electronic states with a narrow bandwidth $Wsim t_2^2/lambda$ are formed compared to a bandwidth of order $t_1$ for intra-orbital hopping. We demonstrate the evolution of the electronic structure, Berry phase distributions for time-reversal and inversion breaking cases, and their imprint on the optical absorption, in a tight binding model of $d$-orbital hopping on a honeycomb lattice. Going beyond quantum Hall effect and twisted bilayer graphene, we provide an alternative mechanism and a richer materials platform for achieving flat bands poised at the brink of instabilities toward novel correlated and fractionalized metallic phases.
The intertwined charge, spin, orbital, and lattice degrees of freedom could endow 5d compounds with exotic properties. Current interest is focused on electromagnetic interactions in these materials, whereas the important role of lattice geometry rema ins to be fully recognized. For this sake, we investigate pressure-induced phase transitions in the spin-orbit Mott insulator Sr3Ir2O7 with Raman, electrical resistance, and x-ray diffraction measurements. We reveal an interesting magnetic transition coinciding with a structural transition at 14.4 GPa, but without a concurrent insulator-metal transition. The conventional correlation between magnetic and Mott insulating states is thereby absent. The observed softening of the one-magnon mode can be explained by a reduced tetragonal distortion, while the actual magnetic transition is associated with tilting of the IrO6 octahedra. This work highlights the critical role of lattice frustration in determining the high-pressure phases of Sr3Ir2O7. The ability to control electromagnetic properties via manipulating the crystal structure with pressure promises a new way to explore new quantum states in spin-orbit Mott insulators.
In the triangular layered magnet PdCrO2 the intralayer magnetic interactions are strong, however the lattice structure frustrates interlayer interactions. In spite of this, long-range, 120$^circ$ antiferromagnetic order condenses at $T_N = 38$~K. We show here through neutron scattering measurements under in-plane uniaxial stress and in-plane magnetic field that this occurs through a spontaneous lifting of the three-fold rotational symmetry of the nonmagnetic lattice, which relieves the interlayer frustration. We also show through resistivity measurements that uniaxial stress can suppress thermal magnetic disorder within the antiferromagnetic phase.
Using ab initio calculations, we have investigated an insulating tetragonally distorted perovskite BaCrO$_3$ with a formal $3d^2$ configuration, the volume of which is apparently substantially enhanced by a strain due to SrTiO$_3$ substrate. Inclusio n of both correlation and spin-orbit coupling (SOC) effects leads to a metal-insulator transition and in-plane zigzag orbital-ordering (OO) of alternating singly filled $d_{xz}+id_{yz}$ and $d_{xz}-id_{yz}$ orbitals, which results in a large orbital moment $M_L$ ~ -0.78 $mu_B$ antialigned to the spin moment $M_S$ ~ $2|M_L|$ in Cr ions. Remarkably, this ordering also induces a considerable $M_L$ for apical oxygens. Our findings show metal-insulator and OO transitions, driven by an interplay among strain, correlation, and SOC, which is uncommon in 3d systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا