ترغب بنشر مسار تعليمي؟ اضغط هنا

Depolarization of backscattered linearly polarized light

100   0   0.0 ( 0 )
 نشر من قبل Frank Scheffold
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We formulate a quantitative description of backscattered linearly polarized light using an extended photon diffusion formalism taking explicitly into account the scattering anisotropy parameter g of the medium. From diffusing wave spectroscopy measurements the characteristic depolarization length for linearly polarized light is deduced. We investigate the dependance of this length on the scattering anisotropy parameter g spanning an extended range from -1 (backscattering) to 1 (forward scattering). Good agreement is found with Monte Carlo simulations of multiply scattered light.

قيم البحث

اقرأ أيضاً

We experimentally demonstrate a three-dimensional chiral optical metamaterial that exhibits an asymmetric transmission for forwardly and backwardly propagating linearly polarized light. The observation of this novel effect requires a metamaterial com posed of three-dimensional chiral metaatoms without any rotational symmetry. Our analysis is supported by a systematic investigation of the transmission matrices for arbitrarily complex, lossy media that allows deriving a simple criterion for asymmetric transmission in an arbitrary polarization base. Contrary to physical intuition, in general the polarization eigenstates in such three-dimensional and low-symmetry metamaterials do not obey fxed relations and the associated transmission matrices cannot be symmetrized.
We study the optical properties of semiconducting transition metal dichalcogenide monolayers under the influence of strong out-of-plane magnetic fields, using the effective massive Dirac model. We pay attention to the role of spin-orbit coupling effe cts, doping level and electron-electron interactions, treated at the Hartree-Fock level. We find that optically-induced valley and spin imbalance, commonly attained with circularly polarized light, can also be obtained with linearly polarized light in the doped regime. Additionally, we explore an exchange-driven mechanism to enhance the spin-orbit splitting of the conduction band, in n-doped systems, controlling both the carrier density and the intensity of the applied magnetic field.
128 - Tao Liu , George Smoot , Yue Zhao 2019
Non-relativistic QCD axions or axion-like particles are among the most popular candidates for cold Dark Matter (DM) in the universe. We proposed to detect axion-like DM, using linearly polarized pulsar light as a probe. Because of birefringence effec t potentially caused by an oscillating galactic axion DM background, when pulsar light travels across the galaxy, its linear polarization angle may vary with time. With a soliton+NFW galactic DM density profile, we show that this strategy can potentially probe an axion-photon coupling as small as $sim 10^{-13}$ GeV$^{-1}$ for axion mass $m_a sim 10^{-22}-10^{-20}$ eV, given the current measurement accuracy. An exclusion limit stronger than CAST ($ sim 10^{-10}$ GeV$^{-1}$) and SN1987A ($ sim 10^{-11}$ GeV$^{-1}$) could be extended up to $m_a sim 10^{-18}$ eV and $sim 10^{-19}$ eV, respectively.
The backscattering of circularly polarized light at normal incidence to a half-space of scattering particles is studied using the Electric Field Monte Carlo (EMC) method. The spatial distribution of the backscattered light intensity is examined for b oth the time-resolved and continuous-wave cases for large particles with anisotropy factor, g, in the range 0.8 to 0.97. For the time-resolved case, the backscattered light with the same helicity as that of the incident beam (co-polarized) is found to form a ring centered on the point of incidence. The ring expands and simultaneously grows weak as time increases. The intensity of backscattered light with helicity opposite to that of the incident beam (cross-polarized) is found to exhibit a ring behavior for g>=0.85, with significant backscattering at the point of incidence. For the continuous-wave case no such ring pattern is observed in backscattered light for either helicity. The present EMC study suggests that the ring behavior can only be observed in the time domain, in contrast to previous studies of light backscattered from forward scattering media based on the scalar time-independent Fokker-Planck approximation to the radiative transfer equation. The time-dependent ring structure of backscattered light may have potential use in subsurface imaging applications.
Quantum light depolarization is handled through a master equation obtained by coupling dispersively the field to a randomly distributed atomic reservoir. This master equation is solved by transforming it into a quasiprobability distribution in phase space and the quasiclassical limit is investigated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا