ﻻ يوجد ملخص باللغة العربية
The quantum de Haas van Alphen (dHvA) and Shubnikov de Haas (SdH) oscillations measured in graphite were decomposed by pass-band filtering onto contributions from three different groups of carriers. We develop the two-dimensional phase analysis method which allows to identify these carriers as (i) minority holes having two-dimensional (2D) parabolic massive spectrum, (ii) majority electrons, also massive but with intermediate 2D-3D spectrum, and (iii) majority holes with 2D Dirac-like spectrum which seems to be responsible for the unusual strongly-correlated electronic phenomena in graphite.
The in-plane resistivity, Hall resistivity and magnetization of graphite were investigated in pulsed magnetic fields applied along the textit{c}-axis. The Hall resistivity approaches zero at around 53 T where the in-plane and out-of-plane resistiviti
We report measurements of quantum oscillations detected in the putative nematic phase of Sr3Ru2O7. Significant improvements in sample purity enabled the resolution of small amplitude dHvA oscillations between two first order metamagnetic transitions
Magnetotransport measurements performed on several well-characterized highly oriented pyrolitic graphite and single crystalline Kish graphite samples reveal a reentrant metallic behavior in the basal-plane resistance at high magnetic fields, when onl
We demonstrate a mechanism for magnetoresistance oscillations in insulating states of two-dimensional (2D) materials arising from the interaction of the 2D layer and proximal graphite gates. We study a series of devices based on different two-dimensi
In the immediate vicinity of the critical temperature (T$_c$) of a phase transition, there are fluctuations of the order parameter, which reside beyond the mean-field approximation. Such critical fluctuations usually occur in a very narrow temperatur