ﻻ يوجد ملخص باللغة العربية
A theoretical study of photonic bands for one-dimensional (1D) lattices embedded in planar waveguides with strong refractive index contrast is presented. The approach relies on expanding the electromagnetic field on the basis of guided modes of an effective waveguide, and on treating the coupling to radiative modes by perturbation theory. Photonic mode dispersion, gap maps, and intrinsic diffraction losses of quasi-guided modes are calculated for the case of self-standing membranes as well as for Silicon-on-Insulator structures. Photonic band gaps in a waveguide are found to depend strongly on the core thickness and on polarization, so that the gaps for transverse electric and transverse magnetic modes most often do not overlap. Radiative losses of quasi-guided modes above the light line depend in a nontrivial way on structure parameters, mode index and wavevector. The results of this study may be useful for the design of integrated 1D photonic structures with low radiative losses.
According to a recent proposal [S. Takayama et al., Appl. Phys. Lett. 87, 061107 (2005)], the triangular lattice of triangular air holes may allow to achieve a complete photonic band gap in two-dimensional photonic crystal slabs. In this work we pres
A novel polarizer made from two-dimensional photonic bandgap materials was demonstrated theoretically. This polarizer is fundamentally different from the conventinal ones. It can function in a wide frequency range with high performance and the size c
It is shown that total reflection for all incident angles does not require a two- or three-dimensional photonic crystal. We demonstrate that a one-dimensional photonic crystal can exhibit total omni-directional reflection for any incident wave within
A finite element-based modal formulation of diffraction of a plane wave by an absorbing photonic crystal slab of arbitrary geometry is developed for photovoltaic applications. The semi-analytic approach allows efficient and accurate calculation of th
The dispersion properties of exciton polaritons in multiple-quantum-well based resonant photonic crystals are studied. In the case of structures with an elementary cell possessing a mirror symmetry with respect to its center, a powerful analytical me