ترغب بنشر مسار تعليمي؟ اضغط هنا

Reduction of spin transfer by synthetic antiferromagnets

108   0   0.0 ( 0 )
 نشر من قبل Nathan Emley
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف N. C. Emley




اسأل ChatGPT حول البحث

Synthetic antiferromagnetic layers (SAF) are incorporated into spin transfer nanopillars giving a layer composition [Co(bottom)/Ru/Co(fixed)]/Cu/Co(free), where square brackets indicate the SAF. The Co(bottom) and Co(fixed) layers are aligned antiparallel (AP) by strong indirect exchange coupling through the Ru spacer. All three magnetic layers are patterned, so this AP alignment reduces undesirable dipole fields on the Co(free) layer. Adding the Co(bottom)/Ru layers reduces the spin polarization of the electron current passing through the nanopillar, leading to a decreased spin-torque per unit current incident on the Co(free) layer. This may be advantageous for device applications requiring a reduction of the effects of a spin-torque, such as nanoscale CPP-GMR read heads.

قيم البحث

اقرأ أيضاً

107 - A. Sud , Y. Koike , S. Iihama 2020
We report in this study the current-induced-torque excitation of acoustic and optical modes in Ta/NiFe/Ru/NiFe/Ta synthetic antiferromagnet stacks grown on SiO2/Si substrates. The two Ta layers serve as spin torque sources with the opposite polarisat ions both in spin currents and Oersted fields acting on their adjacent NiFe layers. This can create the odd symmetry of spatial spin torque distribution across the growth direction, allowing us to observe different spin-wave excitation efficiency from synthetic antiferromagnets excited by homogeneous torques. We analyse the torque symmetry by in-plane angular dependence of symmetric and anti-symmetric lineshape amplitudes for their resonance and confirm that the parallel (perpendicular) pumping nature for the acoustic (optical) modes in our devices, which is in stark difference from the modes excited by spatially homogeneous torques. We also present our macrospin model for this particular spin-torque excitation geometry, which excellently supports our experimental observation. Our results offer capability of controlling spin-wave excitations by local spin-torque sources and we can explore further spin-wave control schemes based on this concept.
Noncollinear chiral spin textures in ferromagnetic multilayers are at the forefront of recent research in nano-magnetism with the promise for fast and energy-efficient devices. The recently demonstrated possibilities to stabilize such chiral structur es in synthetic antiferromagnets (SAF) has raised interests as they are immune to dipolar field, hence favoring the stabilization of ultra small textures, improve mobility and avoid the transverse deflections of moving skyrmions limiting the efficiency in some foreseen applications. However, such systems with zero net magnetization are hence difficult to characterize by most of the standard techniques. Here, we report that the relevant parameters of a magnetic SAF texture, those being its period, its type (Neel or Bloch) and its chirality (clockwise or counterclockwise), can be directly determined using the circular dichroism in x-ray resonant scattering (CD-XRMS) at half integer multilayer Bragg peaks in reciprocal space. The analysis of the dependence in temperature down to 40K allows us moreover to address the question of the temperature stability of a spin spiral in a SAF sample and of the temperature scaling of the symmetric and antisymmetric exchange interactions.
The exchange coupling underlies ferroic magnetic coupling and is thus the key element that governs statics and dynamics of magnetic systems. This fundamental interaction comes in two flavors - symmetric and antisymmetric coupling. While symmetric cou pling leads to ferro- and antiferromagnetism, antisymmetric coupling has attracted significant interest owing to its major role in promoting topologically non-trivial spin textures that promise high-speed and energy-efficient devices. So far, the antisymmetric exchange coupling rather short-ranged and limited to a single magnetic layer has been demonstrated, while the symmetric coupling also leads to long-range interlayer exchange coupling. Here, we report the missing component of the long-range antisymmetric interlayer exchange coupling in perpendicularly magnetized synthetic antiferromagnets with parallel and antiparallel magnetization alignments. Asymmetric hysteresis loops under an in-plane field unambiguously reveal a unidirectional and chiral nature of this novel interaction, which cannot be accounted for by existing coupling mechanisms, resulting in canted magnetization alignments. This can be explained by spin-orbit coupling combined with reduced symmetry in multilayers. This new class of chiral interaction provides an additional degree of freedom for engineering magnetic structures and promises to enable a new class of three-dimensional topological structures.
The problem of characterizing low-temperature spin dynamics in antiferromagnetic spin chains has so far remained elusive. We reinvestigate it by focusing on isotropic antiferromagnetic chains whose low-energy effective field theory is governed by the quantum non-linear sigma model. We outline an exact non-perturbative theoretical approach to analyse the low-temperature behaviour in the vicinity of non-magnetized states, and obtain explicit expressions for the spin diffusion constant and the NMR relaxation rate, which we compare with previous theoretical results in the literature. Surprisingly, in SU(2)-invariant spin chains in the vicinity of half-filling we find a crossover from the semi-classical regime to a strongly interacting quantum regime characterized by zero spin Drude weight and diverging spin conductivity, indicating super-diffusive spin dynamics. The dynamical exponent of spin fluctuations is argued to belong to the Kardar-Parisi-Zhang universality class. Furthermore, by employing numerical tDMRG simulations, we find robust evidence that the anomalous spin transport persists also at high temperatures, irrespectively of the spectral gap and integrability of the model.
81 - W. Song , A.K.M. Newaz , J.K. Son 2005
We have found experimentally that the shot noise of the tunneling current $I$ through an undoped semiconductor superlattice is reduced with respect to the Poissonian noise value $2eI$, and that the noise approaches 1/3 of that value in superlattices whose quantum wells are strongly coupled. On the other hand, when the coupling is weak or when a strong electric field is applied to the superlattice the noise becomes Poissonian. Although our results are qualitatively consistent with existing theories for one-dimensional mulitple barriers, the theories cannot account for the dependence of the noise on superlattice parameters that we have observed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا