ﻻ يوجد ملخص باللغة العربية
Synthetic antiferromagnetic layers (SAF) are incorporated into spin transfer nanopillars giving a layer composition [Co(bottom)/Ru/Co(fixed)]/Cu/Co(free), where square brackets indicate the SAF. The Co(bottom) and Co(fixed) layers are aligned antiparallel (AP) by strong indirect exchange coupling through the Ru spacer. All three magnetic layers are patterned, so this AP alignment reduces undesirable dipole fields on the Co(free) layer. Adding the Co(bottom)/Ru layers reduces the spin polarization of the electron current passing through the nanopillar, leading to a decreased spin-torque per unit current incident on the Co(free) layer. This may be advantageous for device applications requiring a reduction of the effects of a spin-torque, such as nanoscale CPP-GMR read heads.
We report in this study the current-induced-torque excitation of acoustic and optical modes in Ta/NiFe/Ru/NiFe/Ta synthetic antiferromagnet stacks grown on SiO2/Si substrates. The two Ta layers serve as spin torque sources with the opposite polarisat
Noncollinear chiral spin textures in ferromagnetic multilayers are at the forefront of recent research in nano-magnetism with the promise for fast and energy-efficient devices. The recently demonstrated possibilities to stabilize such chiral structur
The exchange coupling underlies ferroic magnetic coupling and is thus the key element that governs statics and dynamics of magnetic systems. This fundamental interaction comes in two flavors - symmetric and antisymmetric coupling. While symmetric cou
The problem of characterizing low-temperature spin dynamics in antiferromagnetic spin chains has so far remained elusive. We reinvestigate it by focusing on isotropic antiferromagnetic chains whose low-energy effective field theory is governed by the
We have found experimentally that the shot noise of the tunneling current $I$ through an undoped semiconductor superlattice is reduced with respect to the Poissonian noise value $2eI$, and that the noise approaches 1/3 of that value in superlattices