ترغب بنشر مسار تعليمي؟ اضغط هنا

Surfactant-like Effect and Dissolution of Ultrathin Fe Films on Ag(001)

77   0   0.0 ( 0 )
 نشر من قبل Luca Floreano
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Terreni




اسأل ChatGPT حول البحث

The phase immiscibility and the excellent matching between Ag(001) and Fe(001) unit cells (mismatch 0.8 %) make Fe/Ag growth attractive in the field of low dimensionality magnetic systems. Intermixing could be drastically limited at deposition temperatures as low as 140-150 K. The film structural evolution induced by post-growth annealing presents many interesting aspects involving activated atomic exchange processes and affecting magnetic properties. Previous experiments, of He and low energy ion scattering on films deposited at 150 K, indicated the formation of a segregated Ag layer upon annealing at 550 K. Higher temperatures led to the embedding of Fe into the Ag matrix. In those experiments, information on sub-surface layers was attained by techniques mainly sensitive to the topmost layer. Here, systematic PED measurements, providing chemical selectivity and structural information for a depth of several layers, have been accompanied with a few XRD rod scans, yielding a better sensitivity to the buried interface and to the film long range order. The results of this paper allow a comparison with recent models enlightening the dissolution paths of an ultra thin metal film into a different metal, when both subsurface migration of the deposit and phase separation between substrate and deposit are favoured. The occurrence of a surfactant-like stage, in which a single layer of Ag covers the Fe film is demonstrated for films of 4-6 ML heated at 500-550 K. Evidence of a stage characterized by the formation of two Ag capping layers is also reported. As the annealing temperature was increased beyond 700 K, the surface layers closely resembled the structure of bare Ag(001) with the residual presence of subsurface Fe aggregates.



قيم البحث

اقرأ أيضاً

Cobalt ferrite ultrathin films with inverse spinel structure are among the best candidates for spin-filtering at room temperature. We have fabricated high-quality epitaxial ultrathin CoFe2O4 layers on Ag(001) following a three-step method: an ultrath in metallic CoFe2 alloy was first grown in coherent epitaxy on the substrate, and then treated twice with O2, first at RT and then during annealing. The epitaxial orientation, the surface, interface and film structure were resolved combining LEED, STM, Auger and in situ GIXRD. A slight tetragonal distortion was observed, that should drive the easy magnetization axis in plane due to the large magneto-elastic coupling of such a material. The so-called inversion parameter, i.e. the Co fraction occupying octahedral sites in the ferrite spinel structure, is a key element for its spin-dependent electronic gap. It was obtained through in-situ x-ray resonant diffraction measurements collected at both the Co and Fe K edges. The data analysis was performed using the FDMNES code and showed that Co ions are predominantly located at octahedral sites with an inversion parameter of 0.88 +- 0.05. Ex-situ XPS gave an estimation in accordance with the values obtained through diffraction analysis.
We investigate on-site Coulomb interaction energy between two 3p holes U(Ni 3p) of ultrathin NiO films on Ag(001) by both x-ray photoelectron spectroscopy and Auger electron spectroscopy. As the film becomes thin, U(Ni 3p) monotonically decreases, an d the difference of U(Ni 3p) for 1 monolayer (ML) film from that of bulk-like thick film delta U(Ni 3p) reaches ~ -2.2 eV. The observed delta U(Ni 3p) for 1 ML film is well reproduced by the differences of both the image potential and polarization energies between 1 ML film and the bulk-like thick film. Hence, the present results provide an evidence for the picture originally proposed by Duffy et al. [J. Phys. C: Solid State Phys., 16, 4087 (1983)] and Altieri et al. [Phys. Rev. B 59, R2517 (1999)]
Epitaxial ultrathin Fe films on fcc Cu(001) exhibit a spin spiral (SS), in contrast to the ferromagnetism of bulk bcc Fe. We study the in-plane and out-of-plane Fermi surfaces (FSs) of the SS in 8 monolayer Fe/Cu(001) films using energy dependent sof t x-ray momentum-resolved photoemission spectroscopy. We show that the SS originates in nested regions confined to out-of-plane FSs, which are drastically modified compared to in-plane FSs. From precise reciprocal space maps in successive zones, we obtain the associated real space compressive strain of 1.5+-0.5% along c-axis. An autocorrelation analysis quantifies the incommensurate ordering vector q=(2pi/a)(0,0,~0.86), favoring a SS and consistent with magneto-optic Kerr effect experiments. The results reveal the importance of in-plane and out-of-plane FS mapping for ultrathin films.
High-quality and impurity-free magnetite surfaces with (sqrt2xsqrt2)R45o reconstruction have been obtained for the Fe3O4(001) epitaxial films deposited on Fe(001). Based on atomically resolved STM images for both negative and positive sample polarity and Density Functional Theory calculations, a model of the magnetite (001) surface terminated with Fe ions forming dimers on the reconstructed (sqrt2xsqrt2)R45o octahedral iron layer is proposed.
407 - Jia Xu , Haoran Chen , Chao Zhou 2020
Antiferromagnetic (AFM) domains in ultrathin CoO(001) films are imaged by a wide-field optical microscopy using magneto-optical birefringence effect. The magnetic origin of observed optical contrast is confirmed by the spin orientation manipulation t hrough exchange coupling in Fe/CoO(001) bilayer. The finite size effect of ordering temperature for ultrathin single crystal CoO film is revealed by the thickness and temperature dependent measurement of birefringence contrast. The magneto-optical birefringence effect is found to strongly depend on the photon energy of incident light, and a surprising large polarization rotation angle up to 168.5 mdeg is obtained from a 4.6 nm CoO film with a blue light source, making it possible to further investigate the evolution of AFM domains in AFM ultrathin film under external field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا