ﻻ يوجد ملخص باللغة العربية
We have performed magnetoresistance measurements on polyfluorene sandwich devices in weak magnetic fields as a function of applied voltage, device temperature (10K to 300K), film thickness and electrode materials. We observed either negative or positive magnetoresistance, dependent mostly on the applied voltage, with a typical magnitude of several percent. The shape of the magnetoresistance curve is characteristic of weak localization and antilocalization. Using weak localization theory, we find that the phase-breaking length is relatively large even at room temperature, and spin-orbit interaction is a function of the applied electric field.
We report on the discovery of a large, room temperature magnetoresistance (MR) effect in polyfluorene sandwich devices in weak magnetic fields. We characterize this effect and discuss its dependence on voltage, temperature, film thickness, electrode
Topological insulators (TI) are a new class of quantum materials with insulating bulk enclosed by topologically protected metallic boundaries. The surface states of three-dimensional TIs have spin helical Dirac structure, and are robust against time
Topological materials have attracted considerable experimental and theoretical attention. They exhibit strong spin-orbit coupling both in the band structure (intrinsic) and in the impurity potentials (extrinsic), although the latter is often neglecte
We report electron transport studies in an encapsulated few-layer WTe$_2$ at low temperatures and high magnetic fields. The magnetoconductance reveals a temperature-induced crossover between weak antilocalization (WAL) and weak localization (WL) in q
We study by Monte Carlo simulations a model of knotted polymer ring adsorbing onto an impenetrable, attractive wall. The polymer is described by a self-avoiding polygon (SAP) on the cubic lattice. We find that the adsorption transition temperature, t