ترغب بنشر مسار تعليمي؟ اضغط هنا

g-factor engineering and control in self-assembled quantum dots

376   0   0.0 ( 0 )
 نشر من قبل Harry Westfahl Junior
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The knowledge of electron and hole g-factors, their control and engineering are key for the usage of the spin degree of freedom for information processing in solid state systems. The electronic g-factor will be materials dependent, the effect being larger for materials with large spin-orbit coupling. Since electrons can be individually trapped into quantum dots in a controllable manner, they may represent a good platform for the implementation of quantum information processing devices. Here we use self-assembled quantum dots of InAs embedded in GaAs for the g-factor control and engineering.



قيم البحث

اقرأ أيضاً

Three-dimensional anisotropy of the Lande g-factor and its electrical modulation are studied for single uncapped InAs self-assembled quantum dots (QDs). The g-factor is evaluated from measurement of inelastic cotunneling via Zeeman substates in the Q D for various magnetic field directions. We find that the value and anisotropy of the g-factor depends on the type of orbital state which arises from the three-dimensional confinement anisotropy of the QD potential. Furthermore, the g-factor and its anisotropy are electrically tuned by a side-gate which modulates the confining potential.
We study the g-factor of discrete electron states in InAs nanowire based quantum dots. The g values are determined from the magnetic field splitting of the zero bias anomaly due to the spin 1/2-Kondo effect. Unlike to previous studies based on 2DEG q uantum dots, the g-factors of neighboring electron states show a surprisingly large fluctuation: g can scatter between 2 and 18. Furthermore electric gate tunability of the g-factor is demonstrated.
Polaron dephasing processes are investigated in InAs/GaAs dots using far-infrared transient four wave mixing (FWM) spectroscopy. We observe an oscillatory behaviour in the FWM signal shortly (< 5 ps) after resonant excitation of the lowest energy con duction band transition due to coherent acoustic phonon generation. The subsequent single exponential decay yields long intraband dephasing times of 90 ps. We find excellent agreement between our measured and calculated FWM dynamics, and show that both real and virtual acoustic phonon processes are necessary to explain the temperature dependence of the polarization decay.
The radiative recombination rates of interacting electron-hole pairs in a quantum dot are strongly affected by quantum correlations among electrons and holes in the dot. Recent measurements of the biexciton recombination rate in single self-assembled quantum dots have found values spanning from two times the single exciton recombination rate to values well below the exciton decay rate. In this paper, a Feynman path-integral formulation is developed to calculate recombination rates including thermal and many-body effects. Using real-space Monte Carlo integration, the path-integral expressions for realistic three-dimensional models of InGaAs/GaAs, CdSe/ZnSe, and InP/InGaP dots are evaluated, including anisotropic effective masses. Depending on size, radiative rates of typical dots lie in the regime between strong and intermediate confinement. The results compare favorably to recent experiments and calculations on related dot systems. Configuration interaction calculations using uncorrelated basis sets are found to be severely limited in calculating decay rates.
A detailed study of the $g$-factor anisotropy of electrons and holes in InAs/In$_{0.53}$Al$_{0.24}$Ga$_{0.23}$As self-assembled quantum dots emitting in the telecom spectral range of $1.5-1.6$ $mu$m (around 0.8 eV photon energy) is performed by time- resolved pump-probe ellipticity technique using a superconducting vector magnet. All components of the $g$-factor tensors are measured, including their spread in the quantum dot (QD) ensemble. Surprisingly, the electron $g$ factor shows a large anisotropy changing from $g_{mathrm{e},x}= -1.63$ to $g_{mathrm{e},z}= -2.52$ between directions perpendicular and parallel to the dot growth axis, respectively, at an energy of 0.82 eV. The hole $g$-factor anisotropy at this energy is even stronger: $|g_{text{h},x}|= 0.64$ and $|g_{text{h},z}|= 2.29$. On the other hand, the in-plane anisotropies of electron and hole $g$ factors are small. The pronounced out-of-plane anisotropy is also observed for the spread of the $g$ factors, determined from the spin dephasing time. The hole longitudinal $g$ factors are described with a theoretical model that allows us to estimate the QD parameters. We find that the QD height-to-diameter ratio increases while the indium composition decreases with increasing QD emission energy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا