ترغب بنشر مسار تعليمي؟ اضغط هنا

Oxygen superstructures throughout the phase diagram of $bf (Y,Ca)Ba_2 Cu_3 O_{6+x}$

52   0   0.0 ( 0 )
 نشر من قبل Bernhard Keimer
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Short-range lattice superstructures have been studied with high-energy x-ray diffuse scattering in underdoped, optimally doped, and overdoped $rm (Y,Ca)Ba_2 Cu_3 O_{6+x}$. A new four-unit-cell superstructure was observed in compounds with $xsim 0.95$. Its temperature, doping, and material dependence was used to attribute its origin to short-range oxygen vacancy ordering, rather than electronic instabilities in the $rm CuO_2$ layers. No significant diffuse scattering is observed in YBa$_2$Cu$_4$O$_{8}$. The oxygen superstructures must be taken into account when interpreting spectral anomalies in $rm (Y,Ca)Ba_2 Cu_3 O_{6+x}$.

قيم البحث

اقرأ أيضاً

We use inelastic neutron scattering to study the temperature dependence of the spin excitations of a detwinned superconducting YBa$_2$Cu$_3$O$_{6.45}$ ($T_c=48$ K). In contrast to earlier work on YBa$_2$Cu$_3$O$_{6.5}$ ($T_c=58$ K), where the promine nt features in the magnetic spectra consist of a sharp collective magnetic excitation termed ``resonance and a large ($hbaromegaapprox 15$ meV) superconducting spin gap, we find that the spin excitations in YBa$_2$Cu$_3$O$_{6.45}$ are gapless and have a much broader resonance. Our detailed mapping of magnetic scattering along the $a^ast$/$b^ast$-axis directions at different energies reveals that spin excitations are unisotropic and consistent with the ``hourglass-like dispersion along the $a^ast$-axis direction near the resonance, but they are isotropic at lower energies. Since a fundamental change in the low-temperature normal state of YBa$_2$Cu$_3$O$_{6+y}$ when superconductivity is suppressed takes place at $ysim0.5$ with a metal-to-insulator crossover (MIC), where the ground state transforms from a metallic to an insulating-like phase, our results suggest a clear connection between the large change in spin excitations and the MIC. The resonance therefore is a fundamental feature of metallic ground state superconductors and a consequence of high-$T_c$ superconductivity.
We use a mapping of the multiband Hubbard model for $CuO_{3}$ chains in $RBa_{2}Cu_{3}0_{6+x}$ (R=Y or a rare earth) onto a $t-J$ model and the description of the charge dynamics of the latter in terms pf s spinless model, to study the electronic str ucture of the chains. We briefly review results for the optical conductivity and we calculate the quantum phase diagram of quarter filled chains including Coulomb repulsion up to that between next-nearest-neighbor $Cu$ atoms $V_{2}$, using the resulting effective Hamiltonian, mapped onto an XXZ chain, and the method of crossing of excitation spectra. The method gives accurate results for the boundaries of the metallic phase in this case. The inclusion of $V_{2}$ greatly enhances the region of metallic behavior of the chains.
The far-infrared dielectric response of superlattices (SL) composed of superconducting YBa$_{2}$Cu$_{3}$O$_{7}$ (YBCO) and ferromagnetic La$_{0.67}$% Ca$_{0.33}$MnO$_{3}$ (LCMO) has been investigated by ellipsometry. A drastic decrease of the free ca rrier response is observed which involves an unusually large length scale of d$^{crit}approx $20 nm in YBCO and d$^{crit}approx $10 nm in LCMO. A corresponding suppression of metallicity is not observed in SLs where LCMO is replaced by the paramagnetic metal LaNiO$_{3}$. Our data suggest that either a long range charge transfer from the YBCO to the LCMO layers or alternatively a strong coupling of the charge carriers to the different and competitive kind of magnetic correlations in the LCMO and YBCO layers are at the heart of the observed metal/insulator transition. The low free carrier response observed in the far-infrared dielectric response of the magnetic superconductor RuSr$_{2}$GdCu$_{2}$O$_{8}$ is possibly related to this effect.
We report on an infrared study of carrier dynamics within the CuO$_{2}$ planes in heavily underdoped detwinned single crystals of YBa$_{2}$Cu$_{3}$O$% _{y}$. In an effort to reveal the electronic structure near the onset of superconductivity, we inve stigate the strong anisotropy of the electromagnetic response due to an enhancement of the scattering rate along the a-axis. We propose that the origin of this anisotropy is related to a modulation of the electron density within the CuO$_{2}$ planes.
Resonant magnetic modes with odd and even symmetries were studied by inelastic neutron scattering experiments in the bilayer high-$T_c$ superconductor $rm Y_{1-x}Ca_{x}Ba_2Cu_3O_{6+y}$ over a wide doping range. The threshold of the spin excitation co ntinuum in the superconducting state, deduced from the energies and spectral weights of both modes, is compared with the superconducting d-wave gap, measured on the same samples by electronic Raman scattering in the $B_{1g}$ symmetry. Above a critical doping level of $delta simeq 0.19$, both mode energies and the continuum threshold coincide. We find a simple scaling relationship between the characteristic energies and spectral weights of both modes, which indicates that the resonant modes are bound states in the superconducting energy gap, as predicted by the spin-exciton model of the resonant mode.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا