ترغب بنشر مسار تعليمي؟ اضغط هنا

Si doping on MgB2 thin films by pulsed laser deposition

240   0   0.0 ( 0 )
 نشر من قبل Yue Zhao
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A series of MgB2 thin films were fabricated by pulsed laser deposition (PLD), doped with various amounts of Si up to a level of 18wt%. Si was introduced into the PLD MgB2 films by sequential ablation of a stoichiometric MgB2 target and a Si target. The doped films were deposited at 250 C and annealed in situ at 685 C for 1min. Up to a Si doping level of ~11wt%, the superconducting transition temperature (Tc) of the film does not change significantly, as compared to the control, undoped film. The magnetic critical current density (Jc) of the film at 5K was increased by 50% for a Si doping level of ~3.5wt%, as compared to the control film. Also, the irreversibility field of Si-doped MgB2 films (Hirr) at low temperature is higher than for the undoped film.



قيم البحث

اقرأ أيضاً

172 - E.Bellingeri , R.Buzio , A.Gerbi 2009
Superconducting epitaxial FeSe0.5Te0.5 thin films were prepared on SrTiO3 (001) substrates by pulsed laser deposition. The high purity of the phase, the quality of the growth and the epitaxy were studied with different experimental techniques: X-rays diffraction, reflection high energy electron diffraction, scanning tunnelling microscopy and atomic force microscopy. The substrate temperature during the deposition was found to be the main parameter governing sample morphology and superconducting critical temperature. Films obtained in the optimal conditions show an epitaxial growth with c axis perpendicular to the film surface and the a and b axis parallel to the substrates one, without the evidence of any other orientation. Moreover, such films show a metallic behavior over the whole measured temperature range and critical temperature above 17K, which is higher than the target one.
78 - Y. Zhao , M. Ionescu , J. Horvat 2003
Two types of MgB2 films were prepared by pulsed laser deposition (PLD) with in situ and ex situ annealing processes respectively. Significant differences in properties between the two types of films were found. The ex situ MgB2 film has a Tc of 38.1K , while the in situ film has a depressed Tc of 34.5K. The resistivity at 40K for the in situ film is larger than that of the ex situ film by a factor of 6. The residual resistivity ratios (RRR) are 1.1 and 2.1 for the in situ and ex situ films respectively. The Jc-H curves of the in situ film show a much weaker field dependence than those of the ex situ film, attributable to stronger flux pinning in the in situ film. The small-grain feature and high oxygen level may be critical for the significant improvement of Jc in the in situ annealed MgB2 film.
133 - M. Hoek , F. Coneri , D.P. Leusink 2015
We show that the quality of Nd1.85Ce0.15CuO4 films grown by pulsed laser deposition can be enhanced by using a non-stoichiometric target with extra copper added to suppress the formation of a parasitic (Nd, Ce)2O3 phase. The properties of these films are less dependent on the exact annealing procedure after deposition as compared to films grown from a stoichiometric target. Film growth can be followed by a 1 bar oxygen annealing, after an initial vacuum annealing, while retaining the superconducting properties and quality. This enables the integration of electron-doped cuprates with their hole-doped counterparts on a single chip, to create, for example, superconducting pn-junctions.
We have studied structural and superconducting properties of MgB2 thin films doped with carbon during the hybrid physical-chemical vapor deposition process. A carbon-containing metalorganic precursor bis(cyclopentadienyl)magnesium was added to the ca rrier gas to achieve carbon doping. As the amount of carbon in the films increases, the resistivity increases, Tc decreases, and the upper critical field increases dramatically as compared to the clean films. The self-field Jc in the carbon-doped films is lower than that in the clean films, but Jc remains relatively high to much higher magnetic fields, indicating stronger pinning. Structurally, the doped films are textured with nano-grains and highly resistive amorphous areas at the grain boundaries. The carbon doping approach can be used to produce MgB2 materials for high magnetic field applications.
Epitaxial titanium diboride thin films have been deposited on sapphire substrates by Pulsed Laser Ablation technique. Structural properties of the films have been studied during the growth by Reflection High Energy Electron Diffraction (RHEED) and ex -situ by means of X-ray diffraction techniques; both kinds of measurements indicate a good crystallographic orientation of the TiB2 film both in plane and along the c axis. A flat surface has been observed by Atomic Force Microscopy imaging. Electrical resistivity at room temperature resulted to be five times higher than the value reported for single crystals. The films resulted to be also very stable at high temperature, which is very promising for using this material as a buffer layer in the growth of magnesium diboride thin films.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا