ﻻ يوجد ملخص باللغة العربية
Following the discovery of superconductivity in epsilon-iron, subsequent experiments hinted at non-Fermi liquid behaviour of the normal phase and sensitive dependence of the superconducting state on disorder, both signatures of unconventional pairing. We report further resistive measurements under pressure of samples of iron from multiple sources. The normal state resistivity of epsilon-iron varied as rho_0+AT^{5/3} at low temperature over the entire superconducting pressure domain. The superconductivity could be destroyed by mechanical work, and was restored by annealing, demonstrating sensitivity to the residual resistivity rho_0. There is a strong correlation between the rho_0 and A coefficients and the superconducting critical temperature T_c. Within the partial resistive transition there was a significant current dependence, with V(I)=a(I-I_0)+bI^2, with a >> b, possibly indicating flux-flow resistivity, even in the absence of an externally applied magnetic field.
The electrodynamic properties of Ba(Fe$_{0.92}$Co$_{0.08})_2$As$_{2}$ and Ba(Fe$_{0.95}$Ni$_{0.05})_As$_{2}$ single crystals have been investigated by reflectivity measurements in a wide frequency range. In the metallic state, the optical conductivit
We report the discovery of superconductivity and detailed normal-state physical properties of RbV3Sb5 single crystals with V kagome lattice. RbV3Sb5 single crystals show a superconducting transition at Tc ~ 0.92 K. Meanwhile, resistivity, magnetizati
We report on the synthesis of superconducting single crystals of FeSe, and their characterization by X-ray diffraction, magnetization and resistivity. We have performed ac susceptibility measurements under high pressure in a hydrostatic liquid argon
Recently, C. M. Pepin textit{et al.} [Science textbf{357}, 382 (2017)] reported the formation of several new iron polyhydrides FeH$_x$ at pressures in the megabar range, and spotted FeH$_5$, which forms above 130 GPa, as a potential high-tc supercon
Due to its low atomic mass hydrogen is the most promising element to search for high-temperature phononic superconductors. However, metallic phases of hydrogen are only expected at extreme pressures (400 GPa or higher). The measurement of a record su