ترغب بنشر مسار تعليمي؟ اضغط هنا

Cu NMR Study of Detwinned Single Crystals of Ortho--II YBCO6.5

66   0   0.0 ( 0 )
 نشر من قبل Bryan W. Statt
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Z. Yamani




اسأل ChatGPT حول البحث

Copper NMR has been used as a local probe of the oxygen ordering in Ortho--II YBa2Cu3O6.5 crystals grown in BaZrO3 crucibles. Line assignments have been made to each of the expected crystallographically inequivalent sites. The presence of distinct and narrow lines for these sites as well as the lack of a line known to be associated with oxygen defects indicates that these crystals are highly stoichiometric. Our estimate of the lower limit on the chain length is consistent with that derived from X-ray diffraction measurements. In addition, we have found no evidence for static magnetic moments, in contrast to some previous results.

قيم البحث

اقرأ أيضاً

The polarized Raman scattering spectra from freshly cleaved $ab$, $ac$, and $bc$ surfaces of high quality twin free YBa$_2$Cu$_3$O$_{6.5}$ (Ortho-II) single crystals ($T_c$=57.5 K and $Delta T = 0.6$ K) were studied between 80 and 300 K. All eleven $ A_g$ Raman modes expected for the Ortho-II structure as well some modes of $B_{2g}$ and $B_{3g}$ symmetry were identified in close comparison with predictions of lattice dynamical calculations. The electronic scattering from the $ab$ planes is strongly anisotropic and decreases between 200 and 100 K within the temperature range of previously reported pseudogap opening. The coupling of phonons to Raman active electronic excitations manifested by asymmetric (Fano) profiles of several modes also decreases in the same range. Among the new findings that distinguish the Raman scattering of Ortho-II from that of Ortho-I phase is the unusual relationship ($alpha_{xx} approx -alpha_{yy}$) between the elements of the Raman tensor of the apex oxygen $A_g$ mode.
130 - T. Wu , R. Zhou , M. Hirata 2016
We show that 63Cu NMR spectra place strong constraints on both the nature and the concentration of oxygen defects in ortho-II YBa2Cu3Oy. Systematic deviation from ideal ortho-II order is revealed by the presence of inequivalent Cu sites in either ful l or empty chains. The results can be explained by two kinds of defects: oxygen clustering into additional chains, or fragments thereof, most likely present at all concentrations (6.4<y<6.6) and oxygen vacancies randomly distributed in the full chains for y<6.50 only. Furthermore, the remarkable reproducibility of the spectra in different samples with optimal ortho-II order (y=6.55) shows that chain-oxygen disorder, known to limit electronic coherence, is ineluctable because it is inherent to these compounds.
Nuclear magnetic resonance (NMR) measurements of CuO chains of detwinned Ortho-II YBa$_2$Cu$_3$O$_{6.5}$ (YBCO6.5) single crystals reveal unusual and remarkable properties. The chain Cu resonance broadens significantly, but gradually, on cooling from room temperature. The lineshape and its temperature dependence are substantially different from that of a conventional spin/charge density wave (S/CDW) phase transition. Instead, the line broadening is attributed to small amplitude static spin and charge density oscillations with spatially varying amplitudes connected with the ends of the finite length chains. The influence of this CuO chain phenomenon is also clearly manifested in the plane Cu NMR.
We report measurements of the photoinduced change in reflectivity of an untwinned single crystal of YBa2Cu3O6.5 in the ortho II structure. The decay rate of the transient change in reflectivity is found to decrease rapidly with decreasing temperature and, below Tc, with decreasing laser intensity. We interpret the decay as a process of thermalization of antinodal quasiparticles, whose rate is determined by an inelastic scattering rate of quasiparticle pairs.
We report on the temperature dependence of $^{63}$Cu and $^{199}$Hg NMR magnetic shifts and linewidths for an optimally doped and an underdoped HgBa$_{2}$CuO$_{4+delta}$ single crystal, as well as the quadrupole splitting and its distribution for $^{ 63}$Cu. From the $^{63}$Cu and $^{199}$Hg textit{magnetic shifts} we have recently concluded on the existence of two spin components with different temperature dependencies [J. Haase, D. Rybicki, C. P. Slichter, M. Greven, G. Yu, Y. Li, and X. Zhao, Phys. Rev. B 85, 104517 (2012)]. Here we give a comprehensive account of all data and focus on the linewidths and quadrupole splittings. While the $^{63}$Cu quadrupole coupling and its distribution are by and large temperature independent, we identify three regions in temperature for which the magnetic widths differ significantly: at the lowest temperatures the magnetic linewidths are dominated by the rigid fluxoid lattice that seems to have disappeared above about 60 K. In the intermediate temperature region, starting above 60 K, the magnetic linewidth is dominated by the spatial distribution of the magnetic shift due to the pseudogap spin component, and grows linearly with the total shift up to about textit{$sim$}170-230 K, depending on sample and nucleus. Above this temperature the third region begins with an sudden narrowing where the second, Fermi-liquid-like spin component becomes homogeneous. We show that all linewidths, quadrupolar as well as magnetic, above the fluxoid dominated region can be understood with a simple model that assumes a coherent charge density variation with concomitant variations of the two spin components. In addition, we find a temperature independent spin based broadening in both samples that is incoherent with the other broadening for the underdoped crystal, but becomes coherent for the optimally doped crystal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا