ﻻ يوجد ملخص باللغة العربية
An effective random matrix theory description is developed for the universal gap fluctuations and the ensemble averaged density of states of chaotic Andreev billiards for finite Ehrenfest time. It yields a very good agreement with the numerical calculation for Sinai-Andreev billiards. A systematic linear decrease of the mean field gap with increasing Ehrenfest time $tau_E$ is observed but its derivative with respect to $tau_E$ is in between two competing theoretical predictions and close to that of the recent numerical calculations for Andreev map. The exponential tail of the density of states is interpreted semi-classically.
We examine the density of states of an Andreev billiard and show that any billiard with a finite upper cut-off in the path length distribution $P(s)$ will possess an energy gap on the scale of the Thouless energy. An exact quantum mechanical calculat
We present a classical and quantum mechanical study of an Andreev billiard with a chaotic normal dot. We demonstrate that in general the classical dynamics of these normal-superconductor hybrid systems is mixed, thereby indicating the limitations of
Comparing the results of exact quantum calculations and those obtained from the EBK-like quantization scheme of Silvestrov et al [Phys. Rev. Lett. 90, 116801 (2003)] we show that the spectrum of Andreev billiards of mixed phase space can basically be
We demonstrate that the exact quantum mechanical calculations are in good agreement with the semiclassical predictions for rectangular Andreev billiards and therefore for a large number of open channels it is sufficient to investigate the Bohr-Sommer
I. Introduction (What is new in RMT, Superconducting quasiparticles, Experimental platforms) II. Topological superconductivity (Kitaev chain, Majorana operators, Majorana zero-modes, Phase transition beyond mean-field) III. Fundamental symmetries