ترغب بنشر مسار تعليمي؟ اضغط هنا

Weak charge-lattice coupling requires reinterpretation of stripes of charge order in La1-xCaxMnO3

104   0   0.0 ( 0 )
 نشر من قبل James C. Loudon
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Modulations in manganites attributed to stripes of charge/orbital/spin order are thought to result from strong electron-lattice interactions that lock the superlattice and parent lattice periodicities. Surprisingly in La1-xCaxMnO3(x>0.5, 90 K), convergent beam (3.6 nm spot) electron diffraction patterns rule out charge stacking faults and indicate a superlattice with uniform periodicity. Moreover, large area electron diffraction peaks are sharper than simulations with stacking faults. Since the electron-lattice coupling does not lock the two periodicities (to yield stripes) it may be too weak to strongly localise charge.



قيم البحث

اقرأ أيضاً

125 - M. Granath 2008
For a doped antiferromagnet with short-range spin stripe correlations and long-range charge stripe order we find that the manifestation of charge order changes abruptly as a function of momentum along the Fermi surface. The disorder averaged local de nsity of states is almost perfectly homogeneous when integrated only over states which contribute to the ``nodal spectral weight whereas it displays long range charge stripe order when integrated only over states which contribute to the ``antinodal spectral weight. An effectively two dimensional nodal liquid can thus coexist with static charge stripes provided there is no static spin order. We also study commensurate spin and charge stripe ordered systems where the Fermi surface consists of a nodal hole pocket and an open ``stripe band section. Due to the stripe order the relation between hole density and size of a pocket will be reduced compared to a paramagnet by a factor of two for even charge period and four for odd charge period and we find an estimated upper limit on the area fraction of a hole pocket of 1.6% for charge period four and 4% for charge period five. We also discuss why electron pockets are not expected for a stripe ordered system and show that the open Fermi surface section may be electron like with a negative Hall coefficient.
63 - D. Kim , B. Revaz , B. L. Zink 2002
We report the doping dependence of the order of the ferromagnetic metal to paramagnetic insulator phase transition in La1-xCaxMnO3. At x = 0.33, magnetization and specific heat data show a first order transition, with an entropy change (2.3 J/molK) a ccounted for by both volume expansion and the discontinuity of M ~ 1.7 Bohr magnetons via the Clausius-Clapeyron equation. At x = 0.4, the data show a continuous transition with tricritical point exponents alpha = 0.48+/- 0.06, beta = 0.25+/- 0.03, gamma = 1.03+/- 0.05, and delta = 5.0 +/- 0.8. This tricritical point separates first order (x<0.4) from second order (x>0.4) transitions.
The interplay between crystal symmetry and charge stripe order in Pr1.67Sr0.33NiO4 and Nd1.67Sr0.33NiO4 has been studied by means of single crystal x-ray diffraction. In contrast to tetragonal La1.67Sr0.33NiO4, these crystals are orthorhombic. The co rresponding distortion of the NiO2 planes is found to dictate the direction of the charge stripes, similar to the case of diagonal spin stripes in the insulating phase of La2-xSrxCuO4. In particular, diagonal stripes seem to always run along the short a-axis, which is the direction of the octahedral tilt axis. In contrast, no influence of the crystal symmetry on the charge stripe ordering temperature itself was observed, with T_CO 240K for La, Pr, and Nd. The coupling between lattice and stripe degrees of freedom allows one to produce macroscopic samples with unidirectional stripe order. In samples with stoichiometric oxygen content and a hole concentration of exactly 1/3, charge stripes exhibit a staggered stacking order with a period of three NiO2 layers, previously only observed with electron microscopy in domains of mesoscopic dimensions. Remarkably, this stacking order starts to melt about 40K below T_CO. The melting process can be described by mixing the ground state, which has a 3-layer stacking period, with an increasing volume fraction with a 2-layer stacking period.
61 - T. Mizokawa , D. I. Khomskii , 1999
We have explored spin, charge and orbitally ordered states in La1-xSrxMnO3 (0 < x < 1/2) using model Hartree-Fock calculations on d-p-type lattice models. At x=1/8, several charge and orbitally modulated states are found to be stable and almost degen erate in energy with a homogeneous ferromagnetic state. The present calculation indicates that a ferromagnetic state with a charge modulation along the c-axis which is consistent with the experiment by Yamada et al. might be responsible for the anomalous behavior around x = 1/8.
The insulator-to-metal transition continues to be a challenging subject, especially when electronic correlations are strong. In layered compounds, such as La2-xSrxNiO4 and La2-xBaxCuO4, the doped charge carriers can segregate into periodically-spaced charge stripes separating narrow domains of antiferromagnetic order. Although there have been theoretical proposals of dynamically fluctuating stripes, direct spectroscopic evidence of charge-stripe fluctuations has been lacking. Here we report the detection of critical lattice fluctuations, driven by charge-stripe correlations, in La2-xSrxNiO4 using inelastic neutron scattering. This scattering is detected at large momentum transfers where the magnetic form factor suppresses the spin fluctuation signal. The lattice fluctuations associated with the dynamic charge stripes are narrow in q and broad in energy. They are strongest near the charge stripe melting temperature. Our results open the way towards the quantitative theory of dynamic stripes and for directly detecting dynamical charge stripes in other strongly-correlated systems, including high-temperature superconductors such as La2-xSrxCuO4.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا