ﻻ يوجد ملخص باللغة العربية
Quasi-particle spin susceptibility ($chi^{qp}$) for various heavy-fermion (HF) superconductors are discussed on the basis of the experimental results of electronic specific heat ($gamma_{el}$), NMR Knight shift ($K$) and NMR relaxation rate ($1/T_1$) within the framework of the Fermi liquid model for a Kramers doublet crystal electric field (CEF) ground state. $chi^{qp}_{gamma}$ is calculated from the enhanced Sommerfeld coefficient $gamma_{el}$ and $chi^{qp}_{T_1}$ from the quasi-particle Korringa relation $T_1T(K^{qp}_{T_1})^2=const.$ via the relation of $chi^{qp}_{T_1}=(N_Amu_B/A_{hf})K^{qp}_{T_1}$ where $A_{hf}$ is the hyperfine coupling constant, $N_A$ the Abogadoros number and $mu_B$ the Bohr magneton. For the even-parity (spin-singlet) superconductors CeCu$_2$Si$_2$, CeCoIn$_5$ and UPd$_2$Al$_3$, the fractional decrease in the Knight shift, $delta K^{obs}$, below the superconducting transition temperature ($T_c$) is due to the decrease of the spin susceptibility of heavy quasi-particle estimated consistently from $chi^{qp}_{gamma}$ and $chi^{qp}_{T_1}$. This result allows us to conclude that the heavy quasi-particles form the spin-singlet Cooper pairs in CeCu$_2$Si$_2$, CeCoIn$_5$ and UPd$_2$Al$_3$. On the other hand, no reduction in the Knight shift is observed in UPt$_3$ and UNi$_2$Al$_3$, nevertheless the estimated values of $chi^{qp}_{gamma}$ and $chi^{qp}_{T_1}$ are large enough to be probed experimentally. The odd-parity superconductivity is therefore concluded in these compounds. The NMR result provides a convincing way to classify the HF superconductors into either even- or odd- parity paring together with the identification for the gap structure, as long as the system has Kramers degeneracy.
Rare 4f^2-based heavy-fermion behaviors have been revealed recently in Pr-based filled skutterudites PrFe4P12 and PrOs4Sb12. Recent studies on the thermal properties on both compounds are reported, putting emphasis on the field-induced ordered phase found in PrOs4Sb12.
We report 125Te-NMR studies on a newly discovered heavy fermion superconductor UTe2. Using a single crystal, we have measured the 125Te-NMR Knight shift K and spin-lattice relaxation rate 1/T1 for fields along the three orthorhombic crystal axes. The
To identify the superconducting gap structure in URu2Si2 we perform field-angle-dependent specific heat measurements for the two principal orientations in addition to field rotations, and theoretical analysis based on microscopic calculations. The So
Only few selected examples among the great diversity of anomalous rare earth skutterudite are reviewed. Focus is first given on PrFe4P12 in comparison with URu2Si2. For PrFe4P12, great progress has been made on determining the nature of the order par
Magnetic susceptibility, electrical resistivity and heat capacity data for single crystals of Ce(Rh,Ir)1-x(Co,Ir)xIn5 (0 < x < 1) have allowed us to construct a detailed phase diagram for this new family of heavy-fermion superconductors(HFS). CeRh1-x