ﻻ يوجد ملخص باللغة العربية
This paper is an introductory review of the problem of front propagation into unstable states. Our presentation is centered around the concept of the asymptotic linear spreading velocity v*, the asymptotic rate with which initially localized perturbations spread into an unstable state according to the linear dynamical equations obtained by linearizing the fully nonlinear equations about the unstable state. This allows us to give a precise definition of pulled fronts, nonlinear fronts whose asymptotic propagation speed equals v*, and pushed fronts, nonlinear fronts whose asymptotic speed v^dagger is larger than v*. In addition, this approach allows us to clarify many aspects of the front selection problem, the question whether for a given dynamical equation the front is pulled or pushed. It also is the basis for the universal expressions for the power law rate of approach of the transient velocity v(t) of a pulled front as it converges toward its asymptotic value v*. Almost half of the paper is devoted to reviewing many experimental and theoretical examples of front propagation into unstable states from this unified perspective. The paper also includes short sections on the derivation of the universal power law relaxation behavior of v(t), on the absence of a moving boundary approximation for pulled fronts, on the relation between so-called global modes and front propagation, and on stochastic fronts.
Non-equilibrium dissipative systems usually exhibit multistability, leading to the presence of propagative domain between steady states. We investigate the front propagation into an unstable state in discrete media. Based on a paradigmatic model of c
Propagating fronts arising from bistable reaction-diffusion equations are a purely deterministic effect. Stochastic reaction-diffusion processes also show front propagation which coincides with the deterministic effect in the limit of small fluctuati
We discuss the front propagation in ferroelectric chiral smectics (SmC*) subjected to electric and magnetic fields applied parallel to smectic layers. The reversal of the electric field induces the motion of domain walls or fronts that propagate into
We employ granular hydrodynamics to investigate a paradigmatic problem of clustering of particles in a freely cooling dilute granular gas. We consider large-scale hydrodynamic motions where the viscosity and heat conduction can be neglected, and one
The spontaneous formation of droplets via dewetting of a thin fluid film from a solid substrate allows for materials nanostructuring, under appropriate experimental control. While thermal fluctuations are expected to play a role in this process, thei