ﻻ يوجد ملخص باللغة العربية
Excitation spectroscopy of vortex lattices in rotating Bose-Einstein condensates is described. We numerically obtain the Bogoliubov-deGenne quasiparticle excitations for a broad range of energies and analyze them in the context of the complex dynamics of the system. Our work is carried out in a regime in which standard hydrodynamic assumptions do not hold, and includes features not readily contained within existing treatments.
The complete low-energy collective-excitation spectrum of vortex lattices is discussed for rotating Bose-Einstein condensates (BEC) by solving the Bogoliubov-de Gennes (BdG) equation, yielding, e.g., the Tkachenko mode recently observed at JILA. The
A vortex in a condensate in a nonspherical trapping potential will in general experience a torque. The torque will induce tilting of the direction of the vortex axis. We observe this behavior experimentally and show that by applying small distortions
We report observations of the formation and subsequent decay of a vortex lattice in a Bose-Einstein condensate confined in a hybrid optical-magnetic trap. Vortices are induced by rotating the anharmonic magnetic potential that provides confinement in
We study vortex lattice structures of a trapped Bose-Einstein condensate in a rotating lattice potential by numerically solving the time-dependent Gross-Pitaevskii equation. By rotating the lattice potential, we observe the transition from the Abriko
We have developed an evaporative cooling technique that accelerates the circulation of an ultra-cold $^{87}$Rb gas, confined in a static harmonic potential. As a normal gas is evaporatively spun up and cooled below quantum degeneracy, it is found to