ﻻ يوجد ملخص باللغة العربية
The strength and effect of Coulomb correlations in the (superconducting when hydrated) x~1/3 regime of Na(x)CoO(2) have been evaluated using the correlated band theory LDA+U method. Our results, neglecting quantum fluctuations, are: (1) there is a critical $U_{c}$ = 3 eV, above which charge ordering occurs at x=1/3, (2) in this charge-ordered state, antiferromagnetic coupling is favored over ferromagnetic, while below $U_{c}$, ferromagnetism is favored; and (3) carrier conduction behavior should be very asymmetric for dopings away from x=1/3. For x < 1/3, correlated hopping of parallel spin pairs is favored, suggesting a triplet superconducting phase.
The strength and effect of Coulomb correlations in the (superconducting when hydrated) x~1/3 and ``enhanced x~2/3 regimes of Na(x)CoO2 are evaluated using the correlated band theory LDA+U method. Our results, neglecting quantum fluctuations, are: (1)
We have synthesized and characterized different stable phases of sodium cobaltates Na$_{x}$CoO$_{2}$ with sodium content $0.65<x<0.80$. We demonstrate that $^{23}$Na NMR allows to determine the difference in the susceptibility of the phases and revea
We have synthesized and characterized four different stable phases of Na ordered Na$_{x}$CoO$_{2}$, for $0.65<x<0.8$. Above 100 K they display similar Curie-Weiss susceptibilities as well as ferromagnetic $q=0$ spin fluctuations in the CoO$_{2}$ plan
$^{59}$Co NMR experiments have been performed on single crystals of the layered cobaltate Na$_{x}$CoO$_{2}$ with x=0.77 which is an antiferromagnet with Neel temperature $T_{N}=22$~K. In this metallic phase six Co sites are resolved in the NMR spectr
We report the anomalous Hall effect (AHE) in antiperovskite Mn$_{3}$NiN with substantial doping of Cu on the Ni site (i.e. Mn$_{3}$Ni$_{1-x}$Cu$_{x}$N), which stabilizes a noncollinear antiferromagnetic (AFM) order compatible with the AHE. Observed o