ﻻ يوجد ملخص باللغة العربية
The critical current density flowing across low angle grain boundaries in YBa$_2$Cu$_3$O$_{7-delta}$ thin films has been studied magnetometrically. Films (200 nm thickness) were deposited on SrTiO$_3$ bicrystal substrates containing a single [001] tilt boundary, with angles of 2, 3, 5, and 7 degrees, and the films were patterned into rings. Their magnetic moments were measured in applied magnetic fields up to 30 kOe at temperatures of 5 - 95 K; current densities of rings with or without grain boundaries were obtained from a modified critical state model. For rings containing 5 and 7 degree boundaries, the magnetic response depends strongly on the field history, which arises in large part from self-field effects acting on the grain boundary.
Grain boundaries in YBa$_2$Cu$_3$O$_{7-x}$ superconducting films are considered as Josephson junctions with a critical current density $j_c(x)$ alternating along the junction. A self-generated magnetic flux is treated both analytically and numericall
Combined action of weak and strong pinning centers on the vortex lattice complicates magnetic behavior of a superconductor since temperature and magnetic field differently affect weak and strong pinning. In this paper we show that contributions of we
We report numerical simulations of magnetic flux patterns in asymmetric 45$^{circ}$ [001]-tilt grain boundaries in YBa$_2$Cu$_3$O$_{7-x}$ superconducting films. The grain boundaries are treated as Josephson junctions with the critical current density
Most measurements of critical current densities in YBa$_2$Cu$_3$O$_{7-delta}$ thin films to date have been performed on films where the textit{c}-axis is grown normal to the film surface. With such films, the analysis of the dependence of $j_c$ on th
The magneto-conductance in YBCO grain boundary Josephson junctions, displays fluctuations at low temperatures of mesoscopic origin. The morphology of the junction suggests that transport occurs in narrow channels across the grain boundary line, with