ترغب بنشر مسار تعليمي؟ اضغط هنا

Formation and annihilation of nanocavities during keV ion irradiation of Ge

95   0   0.0 ( 0 )
 نشر من قبل Jay Kim
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nanocavities in Ge(111) created by 5 keV Xe ion irradiation are characterized by ex situ transmission electron microscopy and Rutherford backscattering spectrometry. Nanocavities nucleate near the surface and then undergo thermal migration. Nanocavities with average diameter of 10 nm and areal density of 5.1 x 10-3 nm-2 are observed at 773 K, while nanocavities with average diameter of 2.9 nm and areal density of 3.1 x 10-3 nm-2 are observed at 673 K. The estimated Xe gas pressure inside the nanocavities is 0.035 GPa at 773 K, much smaller than the estimated equilibrium pressure 0.38 GPa. This result suggests that the nanocavities grow beyond equilibrium size at 773 K. The nanocavities are annihilated at the surface to form surface pits by the interaction of displacement cascades of keV Xe ions with the nanocavities. These pits are characterized by in situ scanning tunneling microscopy. Pits are created on Ge(111) and Ge(001) at temperatures ~ 523-578 K by keV Xe ions even when less than a bilayer (monolayer) of surface material is removed.

قيم البحث

اقرأ أيضاً

Energetic particle irradiation of solids can cause surface ultra-smoothening, self-organized nanoscale pattern formation, or degradation of the structural integrity of nuclear reactor components. Periodic patterns including high-aspect ratio quantum dots, with occasional long-range order and characteristic spacing as small as 7 nm, have stimulated interest in this method as a means of sub-lithographic nanofabrication. Despite intensive research there is little fundamental understanding of the mechanisms governing the selection of smooth or patterned surfaces, and precisely which physical effects cause observed transitions between different regimes has remained a matter of speculation. Here we report the first prediction of the mechanism governing the transition from corrugated surfaces to flatness, using only parameter-free molecular dynamics simulations of single-ion impact induced crater formation as input into a multi-scale analysis, and showing good agreement with experiment. Our results overturn the paradigm attributing these phenomena to the removal of target atoms via sputter erosion. Instead, the mechanism dominating both stability and instability is shown to be the impact-induced redistribution of target atoms that are not sputtered away, with erosive effects being essentially irrelevant. The predictions are relevant in the context of tungsten plasma-facing fusion reactor walls which, despite a sputter erosion rate that is essentially zero, develop, under some conditions, a mysterious nanoscale topography leading to surface degradation. Our results suggest that degradation processes originating in impact-induced target atom redistribution effects may be important, and hence that an extremely low sputter erosion rate is an insufficient design criterion for morphologically stable solid surfaces under energetic particle irradiation.
The high energy density of electronic excitations due to the impact of swift heavy ions can induce structural modifications in materials. We present a X-ray diffractometer called ALIX, which has been set up at the low-energy IRRSUD beamline of the GA NIL facility, to allow the study of structural modification kinetics as a function of the ion fluence. The X-ray setup has been modified and optimized to enable irradiation by swift heavy ions simultaneously to X-ray pattern recording. We present the capability of ALIX to perform simultaneous irradiation - diffraction by using energy discrimination between X-rays from diffraction and from ion-target interaction. To illustrate its potential, results of sequential or simultaneous irradiation - diffraction are presented in this article to show radiation effects on the structural properties of ceramics. Phase transition kinetics have been studied during xenon ion irradiation of polycrystalline MgO and SrTiO3. We have observed that MgO oxide is radiation-resistant to high electronic excitations, contrary to the high sensitivity of SrTiO3, which exhibits transition from the crystalline to the amorphous state during irradiation. By interpreting the amorphization kinetics of SrTiO3, defect overlapping models are discussed as well as latent track characteristics. Together with a transmission electron microscopy study, we conclude that a single impact model describes the phase transition mechanism.
We show that the work function of exfoliated single layer graphene can be modified by irradiation with swift (E_{kin}=92 MeV) heavy ions under glancing angles of incidence. Upon ion impact individual surface tracks are created in graphene on SiC. Due to the very localized energy deposition characteristic for ions in this energy range, the surface area which is structurally altered is limited to ~ 0.01 mum^2 per track. Kelvin probe force microscopy reveals that those surface tracks consist of electronically modified material and that a few tracks suffice to shift the surface potential of the whole single layer flake by ~ 400 meV. Thus, the irradiation turns the initially n-doped graphene into p-doped graphene with a hole density of 8.5 x 10^{12} holes/cm^2. This doping effect persists even after heating the irradiated samples to 500{deg}C. Therefore, this charge transfer is not due to adsorbates but must instead be attributed to implanted atoms. The method presented here opens up a new way to efficiently manipulate the charge carrier concentration of graphene.
169 - H. Kato , K. Hamaya , T. Taniyama 2005
We report on a promising approach to the artificial modification of ferromagnetic properties in (Ga,Mn)As using a Ga$^+$ focused ion beam (FIB) technique. The ferromagnetic properties of (Ga,Mn)As such as magnetic anisotropy and Curie temperature can be controlled using Ga$^+$ ion irradiation, originating from a change in hole concentration and the corresponding systematic variation in exchange interaction between Mn spins. This change in hole concentration is also verified using micro-Raman spectroscopy. We envisage that this approach offers a means of modifying the ferromagnetic properties of magnetic semiconductors on the micro- or nano-meter scale.
In molecular nanotechnology, a single molecule is envisioned to act as the basic building block of electronic devices. Such devices may be of special interest for organic photovoltaics, data storage, and smart materials. However, more often than not the molecular function is quenched upon contact with a conducting support. Trial-and-error-based decoupling strategies via molecular functionalisation and change of substrate have in many instances proven to yield unpredictable results. The adsorbate-substrate interactions that govern the function can be understood with the help of first-principles simulation. Employing dispersion-corrected Density-Functional Theory (DFT) and linear expansion Delta-Self-Consistent-Field DFT, the electronic structure of a prototypical surface-adsorbed functional molecule, namely azobenzene adsorbed to (111) single crystal facets of copper, silver and gold, is investigated and the main reasons for the loss or survival of the switching function upon adsorption are identified. The light-induced switching ability of a functionalised derivative of azobenzene on Au(111) and azobenzene on Ag(111) and Au(111) is assessed based on the excited-state potential energy landscapes of their transient molecular ions, which are believed to be the main intermediates of the experimentally observed isomerisation reaction. We provide a rationalisation of the experimentally observed function or lack thereof that connects to the underlying chemistry of the metal-surface interaction and provides insights into general design strategies for complex light-driven reactions at metal surfaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا