ﻻ يوجد ملخص باللغة العربية
The Sznajd model of socio-physics, that only a group of people sharing the same opinion can convince their neighbors, is applied to a scale-free random network modeled by a deterministic graph. We also study a model for elections based on the Sznajd model and the exponent obtained for the distribution of votes during the transient agrees with those obtained for real elections in Brazil and India. Our results are compared to those obtained using a Barabasi-Albert scale-free network.
It is known that the heterogeneity of scale-free networks helps enhancing the efficiency of trapping processes performed on them. In this paper, we show that transport efficiency is much lower in a fractal scale-free network than in non-fractal netwo
The transverse-field Ising model on the Sierpinski fractal, which is characterized by the fractal dimension $log_2^{~} 3 approx 1.585$, is studied by a tensor-network method, the Higher-Order Tensor Renormalization Group. We analyze the ground-state
Several cases of the Sznajd model of socio-physics, that only a group of people sharing the same opinion can convince their neighbors, have been simulated on a more realistic network with a stronger clustering. In addition, many opinions, instead of
A simple model of opinion formation dynamics in which binary-state agents make up their opinions due to the influence of agents in a local neighborhood is studied using different network topologies. Each agent uses two different strategies, the Sznaj
An exact analytical analysis of anomalous diffusion on a fractal mesh is presented. The fractal mesh structure is a direct product of two fractal sets which belong to a main branch of backbones and side branch of fingers. The fractal sets of both bac