ترغب بنشر مسار تعليمي؟ اضغط هنا

Opinion Formation on a Deterministic Pseudo-fractal Network

75   0   0.0 ( 0 )
 نشر من قبل Adriano Sousa A. O. Sousa
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Sznajd model of socio-physics, that only a group of people sharing the same opinion can convince their neighbors, is applied to a scale-free random network modeled by a deterministic graph. We also study a model for elections based on the Sznajd model and the exponent obtained for the distribution of votes during the transient agrees with those obtained for real elections in Brazil and India. Our results are compared to those obtained using a Barabasi-Albert scale-free network.



قيم البحث

اقرأ أيضاً

It is known that the heterogeneity of scale-free networks helps enhancing the efficiency of trapping processes performed on them. In this paper, we show that transport efficiency is much lower in a fractal scale-free network than in non-fractal netwo rks. To this end, we examine a simple random walk with a fixed trap at a given position on a fractal scale-free network. We calculate analytically the mean first-passage time (MFPT) as a measure of the efficiency for the trapping process, and obtain a closed-form expression for MFPT, which agrees with direct numerical calculations. We find that, in the limit of a large network order $V$, the MFPT $<T>$ behaves superlinearly as $<T > sim V^{{3/2}}$ with an exponent 3/2 much larger than 1, which is in sharp contrast to the scaling $<T > sim V^{theta}$ with $theta leq 1$, previously obtained for non-fractal scale-free networks. Our results indicate that the degree distribution of scale-free networks is not sufficient to characterize trapping processes taking place on them. Since various real-world networks are simultaneously scale-free and fractal, our results may shed light on the understanding of trapping processes running on real-life systems.
The transverse-field Ising model on the Sierpinski fractal, which is characterized by the fractal dimension $log_2^{~} 3 approx 1.585$, is studied by a tensor-network method, the Higher-Order Tensor Renormalization Group. We analyze the ground-state energy and the spontaneous magnetization in the thermodynamic limit. The system exhibits the second-order phase transition at the critical transverse field $h_{rm c}^{~} = 1.865$. The critical exponents $beta approx 0.198$ and $delta approx 8.7$ are obtained. Complementary to the tensor-network method, we make use of the real-space renormalization group and improved mean-field approximations for comparison.
220 - A.O. Sousa 2004
Several cases of the Sznajd model of socio-physics, that only a group of people sharing the same opinion can convince their neighbors, have been simulated on a more realistic network with a stronger clustering. In addition, many opinions, instead of usually only two, and a convincing probability have been also considered. Finally, with minor changes we obtain a vote distribution in good agreement with reality.
56 - A.O. Sousa , J.R. Sanchez 2005
A simple model of opinion formation dynamics in which binary-state agents make up their opinions due to the influence of agents in a local neighborhood is studied using different network topologies. Each agent uses two different strategies, the Sznaj d rule with a probability $q$ and the Galam majority rule (without inertia) otherwise; being $q$ a parameter of the system. Initially, the binary-state agents may have opinions (at random) against or in favor about a certain topic. The time evolution of the system is studied using different network topologies, starting from different initial opinion densities. A transition from consensus in one opinion to the other is found at the same percentage of initial distribution no matter which type of network is used or which opinion formation rule is used.
An exact analytical analysis of anomalous diffusion on a fractal mesh is presented. The fractal mesh structure is a direct product of two fractal sets which belong to a main branch of backbones and side branch of fingers. The fractal sets of both bac kbones and fingers are constructed on the entire (infinite) $y$ and $x$ axises. To this end we suggested a special algorithm of this special construction. The transport properties of the fractal mesh is studied, in particular, subdiffusion along the backbones is obtained with the dispersion relation $langle x^2(t)ranglesim t^{beta}$, where the transport exponent $beta<1$ is determined by the fractal dimensions of both backbone and fingers. Superdiffusion with $beta>1$ has been observed as well when the environment is controlled by means of a memory kernel.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا