ترغب بنشر مسار تعليمي؟ اضغط هنا

The signal-to-noise analysis of the Little-Hopfield model revisited

54   0   0.0 ( 0 )
 نشر من قبل T. Verbeiren
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the generating functional analysis an exact recursion relation is derived for the time evolution of the effective local field of the fully connected Little-Hopfield model. It is shown that, by leaving out the feedback correlations arising from earlier times in this effective dynamics, one precisely finds the recursion relations usually employed in the signal-to-noise approach. The consequences of this approximation as well as the physics behind it are discussed. In particular, it is pointed out why it is hard to notice the effects, especially for model parameters corresponding to retrieval. Numerical simulations confirm these findings. The signal-to-noise analysis is then extended to include all correlations, making it a full theory for dynamics at the level of the generating functional analysis. The results are applied to the frequently employed extremely diluted (a)symmetric architectures and to sequence processing networks.



قيم البحث

اقرأ أيضاً

We introduce a spherical Hopfield-type neural network involving neurons and patterns that are continuous variables. We study both the thermodynamics and dynamics of this model. In order to have a retrieval phase a quartic term is added to the Hamilto nian. The thermodynamics of the model is exactly solvable and the results are replica symmetric. A Langevin dynamics leads to a closed set of equations for the order parameters and effective correlation and response function typical for neural networks. The stationary limit corresponds to the thermodynamic results. Numerical calculations illustrate our findings.
We study the recognition capabilities of the Hopfield model with auxiliary hidden layers, which emerge naturally upon a Hubbard-Stratonovich transformation. We show that the recognition capabilities of such a model at zero-temperature outperform thos e of the original Hopfield model, due to a substantial increase of the storage capacity and the lack of a naturally defined basin of attraction. The modified model does not fall abruptly in a regime of complete confusion when memory load exceeds a sharp threshold.
We propose a new framework to understand how quantum effects may impact on the dynamics of neural networks. We implement the dynamics of neural networks in terms of Markovian open quantum systems, which allows us to treat thermal and quantum coherent effects on the same footing. In particular, we propose an open quantum generalisation of the celebrated Hopfield neural network, the simplest toy model of associative memory. We determine its phase diagram and show that quantum fluctuations give rise to a qualitatively new non-equilibrium phase. This novel phase is characterised by limit cycles corresponding to high-dimensional stationary manifolds that may be regarded as a generalisation of storage patterns to the quantum domain.
113 - M.A. Montemurro 2000
In this work we study numerically the out of equilibrium dynamics of the Hopfield model for associative memory inside its spin-glass phase. Besides its interest as a neural network model it can also be considered as a prototype of fully connected mag netic systems with randomness and frustration. By adjusting the ratio between the number of stored configurations $p$ and the total number of neurons $N$ one can control the phase-space structure, whose complexity can vary between the simple mean-field ferromagnet (when $p=1$) and that of the Sherrington-Kirkpatrick spin-glass model (for a properly taken limit of an infinite number of patterns). In particular, little attention has been devoted to the spin-glass phase of this model. In this work we analyse the two-time auto-correlation function, the decay of the magnetization and the distribution of overlaps between states. The results show that within the spin-glass phase of the model the dynamics exhibits ageing phenomena and presents features that suggest a non trivial breaking of replica symmetry.
The phase diagram of the random field Ising model on the Bethe lattice with a symmetric dichotomous random field is closely investigated with respect to the transition between the ferromagnetic and paramagnetic regime. Refining arguments of Bleher, R uiz and Zagrebnov [J. Stat. Phys. 93, 33 (1998)] an exact upper bound for the existence of a unique paramagnetic phase is found which considerably improves the earlier results. Several numerical estimates of transition lines between a ferromagnetic and a paramagnetic regime are presented. The obtained results do not coincide with a lower bound for the onset of ferromagnetism proposed by Bruinsma [Phys. Rev. B 30, 289 (1984)]. If the latter one proves correct this would hint to a region of coexistence of stable ferromagnetic phases and a stable paramagnetic phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا